MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

Related tags

Deep LearningMatchGAN
Overview

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

This repository is the official implementation of MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network.

alt text

This repository is built upon the framework of StarGAN.

1. Cloning the repository

Clone the repository and navigate to it.

$ git clone https://github.com/justin941208/MatchGAN.git
$ cd MatchGAN/

2. Installing requirements

The following libraries should be separately installed. Instructions are available on their respective websites:

Additional requirements can be installed by running:

pip install -r requirements.txt

To evaluate MatchGAN using GAN-train and GAN-test, the following files should be downloaded and unzipped directly under MatchGAN/.

2. Downloading the datasets

To download the CelebA dataset:

$ bash download.sh

In addition, the partition file list_eval_partition.txt should be downloaded from the official CelebA google drive and placed immediately under the directory ./data/celeba/.

To download the RaFD dataset, one must request access to the dataset from the Radboud Faces Database website. Once all the image files are obtained, they need to be placed under the subdirectory ./data/RaFD/data. To preprocess the dataset, run the following command:

$ python preprocess_rafd.py

This will crop all images to 256x256 (centred on face) and split the data into 90% for training and 10% for testing.

3. Training

The command format for training MatchGAN is given by:

$ ./run [dataset] [mode] [labelled percentage] [device]

For example, to train MatchGAN on CelebA with 5% of the training examples labelled on GPU 0, run the following command:

$ ./run celeba train 5 0

To train on RaFD, simply replace "celeba" by "rafd".

4. Testing and evaluating

To test MatchGAN following the above example on CelebA, run the command

$ ./run celeba test 5 0

This will generate synthetic images from the test set and save them to the directory ./matchgan_celeba/results.

To evaluate the model using Frechet Inception Distance (FID), Inception Score (IS), and GAN-test, run the following command:

$ ./run celeba eval 5 0

The following commands trains an external classifier using the synthetic images generated by MatchGAN and then evaluates GAN-train.

$ ./run celeba synth 5 0
$ ./run celeba synth_test 5 0

5. Pretrained model

Pretrained models of MatchGAN (generator only) can be downloaded from this link. To test or evaluate these models, the checkpoint file 200000-G.ckpt should be placed under the directory ./matchgan_celeba/models (for CelebA) or ./matchgan_rafd/models (for RaFD) before running the relevant commands detailed above.

6. Results

Here are some of the results of our pre-trained model from the previous section.

FID

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 12.31 9.34 8.81 6.34 - 5.58
RaFD - - 22.75 9.94 6.65 5.06

IS

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 2.95 2.95 2.99 3.03 - 3.07
RaFD - - 1.64 1.61 1.59 1.58

GAN-train and GAN-test

These numbers are obtained under the 100% setup.

GAN-train GAN-test
CelebA 87.43% 82.26%
RaFD 97.78% 75.95%
Owner
Justin Sun
PhD student
Justin Sun
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022