A Fast Knowledge Distillation Framework for Visual Recognition

Overview

FKD: A Fast Knowledge Distillation Framework for Visual Recognition

Official PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition. Zhiqiang Shen and Eric Xing from CMU and MUZUAI.

Abstract

Knowledge Distillation (KD) has been recognized as a useful tool in many visual tasks, such as the supervised classification and self-supervised representation learning, while the main drawback of a vanilla KD framework lies in its mechanism that most of the computational overhead is consumed on forwarding through the giant teacher networks, which makes the whole learning procedure in a low-efficient and costly manner. In this work, we propose a Fast Knowledge Distillation (FKD) framework that simulates the distillation training phase and generates soft labels following the multi-crop KD procedure, meanwhile enjoying the faster training speed than ReLabel as we have no post-processes like RoI align and softmax operations. Our FKD is even more efficient than the conventional classification framework when employing multi-crop in the same image for data loading. We achieve 79.8% using ResNet-50 on ImageNet-1K, outperforming ReLabel by ~1.0% while being faster. We also demonstrate the efficiency advantage of FKD on the self-supervised learning task.

Supervised Training

Preparation

FKD Training on CNNs

To train a model, run train_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

python train_FKD.py -a resnet50 --lr 0.1 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For --softlabel_path, simply use format as ./FKD_soft_label_500_crops_marginal_smoothing_k_5

Multi-processing distributed training is supported, please refer to official PyTorch ImageNet training code for details.

Evaluation

python train_FKD.py -a resnet50 -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model accuracy (Top-1) weights configurations
ReLabel ResNet-50 78.9 -- --
FKD ResNet-50 79.8 link Table 10 in paper
ReLabel ResNet-101 80.7 -- --
FKD ResNet-101 81.7 link Table 10 in paper

FKD Training on ViT/DeiT and SReT

To train a ViT model, run train_ViT_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

cd train_ViT
python train_ViT_FKD.py -a SReT_LT --lr 0.002 --wd 0.05 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For the instructions of SReT_LT model, please refer to SReT for details.

Evaluation

python train_ViT_FKD.py -a SReT_LT -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model FLOPs #params accuracy (Top-1) weights configurations
DeiT-T-distill 1.3B 5.7M 74.5 -- --
FKD ViT/DeiT-T 1.3B 5.7M 75.2 link Table 11 in paper
SReT-LT-distill 1.2B 5.0M 77.7 -- --
FKD SReT-LT 1.2B 5.0M 78.7 link Table 11 in paper

Fast MEAL V2

Please see MEAL V2 for the instructions to run FKD with MEAL V2.

Self-supervised Representation Learning Using FKD

Please see FKD-SSL for the instructions to run FKD code for SSL task.

Citation

@article{shen2021afast,
      title={A Fast Knowledge Distillation Framework for Visual Recognition}, 
      author={Zhiqiang Shen and Eric Xing},
      year={2021},
      journal={arXiv preprint arXiv:2112.01528}
}

Contact

Zhiqiang Shen (zhiqians at andrew.cmu.edu or zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022