Near-Duplicate Video Retrieval with Deep Metric Learning

Overview

Near-Duplicate Video Retrieval
with Deep Metric Learning

This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retrieval with Deep Metric Learning. It provides code for training and evalutation of a Deep Metric Learning (DML) network on the problem of Near-Duplicate Video Retrieval (NDVR). During training, the DML network is fed with video triplets, generated by a triplet generator. The network is trained based on the triplet loss function. The architecture of the network is displayed in the figure below. For evaluation, mean Average Precision (mAP) and Presicion-Recall curve (PR-curve) are calculated. Two publicly available dataset are supported, namely VCDB and CC_WEB_VIDEO.

Prerequisites

  • Python
  • Tensorflow 1.xx

Getting started

Installation

  • Clone this repo:
git clone https://github.com/MKLab-ITI/ndvr-dml
cd ndvr-dml
  • You can install all the dependencies by
pip install -r requirements.txt

or

conda install --file requirements.txt

Triplet generation

Run the triplet generation process for each dataset, VCDB and CC_WEB_VIDEO. This process will generate two files for each dataset:

  1. the global feature vectors for each video in the dataset:
    <output_dir>/<dataset>_features.npy
  2. the generated triplets:
    <output_dir>/<dataset>_triplets.npy

To execute the triplet generation process, do as follows:

  • The code does not extract features from videos. Instead, the .npy files of the already extracted features have to be provided. You may use the tool in here to do so.

  • Create a file that contains the video id and the path of the feature file for each video in the processing dataset. Each line of the file have to contain the video id (basename of the video file) and the full path to the corresponding .npy file of its features, separated by a tab character (\t). Example:

      23254771545e5d278548ba02d25d32add952b2a4	features/23254771545e5d278548ba02d25d32add952b2a4.npy
      468410600142c136d707b4cbc3ff0703c112575d	features/468410600142c136d707b4cbc3ff0703c112575d.npy
      67f1feff7f624cf0b9ac2ebaf49f547a922b4971	features/67f1feff7f624cf0b9ac2ebaf49f547a922b4971.npy
                                               ...	
    
  • Run the triplet generator and provide the generated file from the previous step, the name of the processed dataset, and the output directory.

python triplet_generator.py --dataset vcdb --feature_files vcdb_feature_files.txt --output_dir output_data/

DML training

  • Train the DML network by providing the global features and triplet of VCDB, and a directory to save the trained model.
python train_dml.py --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/ 
  • Triplets from the CC_WEB_VIDEO can be injected if the global features and triplet of the evaluation set are provide.
python train_dml.py --evaluation_set output_data/cc_web_video_features.npy --evaluation_triplets output_data/cc_web_video_triplets.npy --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/

Evaluation

  • Evaluate the performance of the system by providing the trained model path and the global features of the CC_WEB_VIDEO.
python evaluation.py --fusion Early --evaluation_set output_data/cc_vgg_features.npy --model_path model/

OR

python evaluation.py --fusion Late --evaluation_features cc_web_video_feature_files.txt --evaluation_set output_data/cc_vgg_features.npy --model_path model/
  • The mAP and PR-curve are returned

Citation

If you use this code for your research, please cite our paper.

@inproceedings{kordopatis2017dml,
  title={Near-Duplicate Video Retrieval with Deep Metric Learning},
  author={Kordopatis-Zilos, Giorgos and Papadopoulos, Symeon and Patras, Ioannis and Kompatsiaris, Yiannis},
  booktitle={2017 IEEE International Conference on Computer Vision Workshop (ICCVW)},
  year={2017},
}

Related Projects

ViSiL Intermediate-CNN-Features FIVR-200K

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details

Contact for further details about the project

Giorgos Kordopatis-Zilos ([email protected])
Symeon Papadopoulos ([email protected])

Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
🐀 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐀 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния

ML-MathMethods-Test ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния. ВычислСниС основных статистик, Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Ρ€Π°Π·Π»

Stas Ivanovskii 1 Jan 06, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs πŸ’œ MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023