Revisiting Weakly Supervised Pre-Training of Visual Perception Models

Related tags

Deep LearningSWAG
Overview

SWAG: Supervised Weakly from hashtAGs

This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Perception Models.

PWC
PWC
PWC
PWC
PWC

Requirements

This code has been tested to work with Python 3.8, PyTorch 1.10.1 and torchvision 0.11.2.

Note that CUDA support is not required for the tutorials.

To setup PyTorch and torchvision, please follow PyTorch's getting started instructions. If you are using conda on a linux machine, you can follow the following setup instructions -

conda create --name swag python=3.8
conda activate swag
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

Model Zoo

We share checkpoints for all the pretrained models in the paper, and their ImageNet-1k finetuned counterparts. The models are available via torch.hub, and we also share URLs to all the checkpoints.

The details of the models, their torch.hub names / checkpoint links, and their performance on Imagenet-1k (IN-1K) are listed below.

Model Pretrain Resolution Pretrained Model Finetune Resolution IN-1K Finetuned Model IN-1K Top-1 IN-1K Top-5
RegNetY 16GF 224 x 224 regnety_16gf 384 x 384 regnety_16gf_in1k 86.02% 98.05%
RegNetY 32GF 224 x 224 regnety_32gf 384 x 384 regnety_32gf_in1k 86.83% 98.36%
RegNetY 128GF 224 x 224 regnety_128gf 384 x 384 regnety_128gf_in1k 88.23% 98.69%
ViT B/16 224 x 224 vit_b16 384 x 384 vit_b16_in1k 85.29% 97.65%
ViT L/16 224 x 224 vit_l16 512 x 512 vit_l16_in1k 88.07% 98.51%
ViT H/14 224 x 224 vit_h14 518 x 518 vit_h14_in1k 88.55% 98.69%

The models can be loaded via torch hub using the following command -

model = torch.hub.load("facebookresearch/swag", model="vit_b16_in1k")

Inference Tutorial

For a tutorial with step-by-step instructions to perform inference, follow our inference tutorial and run it locally, or Google Colab.

Live Demo

SWAG has been integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo on Hugging Face Spaces.

Credits: AK391

ImageNet 1K Evaluation

We also provide a script to evaluate the accuracy of our models on ImageNet 1K, imagenet_1k_eval.py. This script is a slightly modified version of the PyTorch ImageNet example which supports our models.

To evaluate the RegNetY 16GF IN1K model on a single node (one or more GPUs), one can simply run the following command -

python imagenet_1k_eval.py -m regnety_16gf_in1k -r 384 -b 400 /path/to/imagenet_1k/root/

Note that we specify a 384 x 384 resolution since that was the model's training resolution, and also specify a mini-batch size of 400, which is distributed over all the GPUs in the node. For larger models or with fewer GPUs, the batch size will need to be reduced. See the PyTorch ImageNet example README for more details.

Citation

If you use the SWAG models or if the work is useful in your research, please give us a star and cite:

@misc{singh2022revisiting,
      title={Revisiting Weakly Supervised Pre-Training of Visual Perception Models}, 
      author={Singh, Mannat and Gustafson, Laura and Adcock, Aaron and Reis, Vinicius de Freitas and Gedik, Bugra and Kosaraju, Raj Prateek and Mahajan, Dhruv and Girshick, Ross and Doll{\'a}r, Piotr and van der Maaten, Laurens},
      journal={arXiv preprint arXiv:2201.08371},
      year={2022}
}

License

SWAG models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Meta Research
Meta Research
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022