A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

Related tags

Deep Learningbrave
Overview

BraVe

This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

The model provided in this package was implemented based on the internal model that was used to compute results for the accompanying paper. It achieves comparable results on the evaluation tasks when evaluated side-by-side. Not all details are guaranteed to be identical though, and some results may differ from those given in the paper. In particular, this implementation does not provide the option to train with optical flow.

We provide a selection of pretrained checkpoints in the table below, which can directly be evaluated against HMDB 51 with the evaluation tools this package. These are exactly the checkpoints that were used to provide the numbers in the accompanying paper, and were not trained with the exact trainer given in this package. For details on training a model with this package, please see the end of this readme.

In the table below, the different configurations are represented by using e.g. V/A for video (narrow view) to audio (broad view), or V/F for a narrow view containing video, and a broad view containing optical flow.

The backbone in each case is TSMResnet, with a given width multiplier (please see the accompanying paper for further details). For all of the given numbers below, the SVM regularization constant used is 0.0001. For HMDB 51, the average is given in brackets, followed by the top-1 percentages for each of the splits.

Views Architecture HMDB51 UCF-101 K600 Trained with this package Checkpoint
V/AF TSM (1X) (69.2%) 71.307%, 68.497%, 67.843% 92.9% 69.2% download
V/AF TSM (2X) (69.9%) 72.157%, 68.432%, 69.02% 93.2% 70.2% download
V/A TSM (1X) (69.4%) 70.131%, 68.889%, 69.085% 93.0% 70.6% download
V/VVV TSM (1X) (65.4%) 66.797%, 63.856%, 65.425% 92.6% 70.8% download

Reproducing results from the paper

This package provides everything needed to evaluate the above checkpoints against HMDB 51. It supports Python 3.7 and above.

To get started, we recommend using a clean virtualenv. You may then install the brave package directly from GitHub using,

pip install git+https://github.com/deepmind/brave.git

A pre-processed version of the HMDB 51 dataset can be downloaded using the following command. It requires that both ffmpeg and unrar are available. The following will download the dataset to /tmp/hmdb51/, but any other location would also work.

  python -m brave.download_hmdb --output_dir /tmp/hmdb51/

To evaluate a checkpoint downloaded from the above table, the following may be used. The dataset shards arguments should be set to match the paths used above.

  python -m brave.evaluate_video_embeddings \
    --checkpoint_path <path/to/downloaded/checkpoint>.npy \
    --train_dataset_shards '/tmp/hmdb51/split_1/train/*' \
    --test_dataset_shards '/tmp/hmdb51/split_1/test/*' \
    --svm_regularization 0.0001 \
    --batch_size 8

Note that any of the three splits can be evaluated by changing the dataset split paths. To run this efficiently using a GPU, it is also necessary to install the correct version of jaxlib. To install jaxlib with support for cuda 10.1 on linux, the following install should be sufficient, though other precompiled packages may be found through the JAX documentation.

  pip install https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.69+cuda101-cp39-none-manylinux2010_x86_64.whl

Depending on the available GPU memory available, the batch_size parameter may be tuned to obtain better performance, or to reduce the required GPU memory.

Training a network

This package may also be used to train a model from scratch using jaxline. In order to try this, first ensure the configuration is set appropriately by modifying brave/config.py. At minimum, it would also be necessary to choose an appropriate global batch size (by default, the setting of 512 is likely too large for any single-machine training setup). In addition, a value must be set for dataset_shards. This should contain the paths of the tfrecord files containing the serialized training data.

For details on checkpointing and distributing computation, see the jaxline documentation.

Similarly to above, it is necessary to install the correct jaxlib package to enable training on a GPU.

The training may now be launched using,

  python -m brave.experiment --config=brave/config.py

Training datasets

This model is able to read data stored in the format specified by DMVR. For an example of writing training data in the correct format see the code in dataset/fixtures.py, which is used to write the test fixtures used in the tests for this package.

Running the tests

After checking out this code locally, you may run the package tests using

  pip install -e .
  pytest brave

We recommend doing this from a clean virtual environment.

Citing this work

If you use this code (or any derived code), data or these models in your work, please cite the relevant accompanying paper.

@misc{recasens2021broaden,
      title={Broaden Your Views for Self-Supervised Video Learning},
      author={Adrià Recasens and Pauline Luc and Jean-Baptiste Alayrac and Luyu Wang and Ross Hemsley and Florian Strub and Corentin Tallec and Mateusz Malinowski and Viorica Patraucean and Florent Altché and Michal Valko and Jean-Bastien Grill and Aäron van den Oord and Andrew Zisserman},
      year={2021},
      eprint={2103.16559},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Disclaimer

This is not an official Google product

Owner
DeepMind
DeepMind
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022