Code repository for "Free View Synthesis", ECCV 2020.

Overview

Free View Synthesis

Code repository for "Free View Synthesis", ECCV 2020.

Setup

Install the following Python packages in your Python environment

- numpy (1.19.1)
- scikit-image (0.15.0)
- pillow (7.2.0)
- pytorch (1.6.0)
- torchvision (0.7.0)

Clone the repository and initialize the submodule

git clone https://github.com/intel-isl/FreeViewSynthesis.git
cd FreeViewSynthesis
git submodule update --init --recursive

Finally, build the Python extension needed for preprocessing

cd ext/preprocess
cmake -DCMAKE_BUILD_TYPE=Release .
make 

Tested with Ubuntu 18.04 and macOS Catalina. If you do not have a C++17 compatible compiler, you can change the code as descibed here.

Run Free View Synthesis

Make sure you adapted the paths in config.py to point to the downloaded data!

You can download the pre-trained models here

# in FreeViewSynthesis directory
wget https://storage.googleapis.com/isl-datasets/FreeViewSynthesis/experiments.tar.gz
tar xvzf experiments.tar.gz
# there should now be net*params files in exp/experiments/*/

Then run the evaluation via

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd eval --iter last --eval-dsets tat-subseq --eval-scale 0.5

This will run the pretrained network on the four Tanks and Temples sequences.

To train the network from scratch you can run

python exp.py --net rnn_vgg16unet3_gruunet4.64.3 --cmd retrain

Data

We provide the preprocessed Tanks and Temples dataset as we used it for training and evaluation here. Our new recordings can be downloaded in a preprocessed version from here.

We used COLMAP for camera registration, multi-view stereo and surface reconstruction on full resolution. The packages above contain the already undistorted and registered images. In addition, we provide the estimated camera calibrations, rendered depthmaps used for warping, and closest source image information.

In more detail, a single folder ibr3d_*_scale (where scale is the scale factor with respect to the original images) contains:

  • im_XXXXXXXX.[png|jpg] the downsampled images used as source images, or as target images.
  • dm_XXXXXXXX.npy the rendered depthmaps based on the COLMAP surface reconstruction.
  • Ks.npy contains the 3x3 intrinsic camera matrices, where Ks[idx] corresponds to the depth map dm_{idx:08d}.npy.
  • Rs.npy contains the 3x3 rotation matrices from the world coordinate system to camera coordinate system.
  • ts.npy contains the 3 translation vectors from the world coordinate system to camera coordinate system.
  • count_XXXXXXXX.npy contains the overlap information from target images to source images. I.e., the number of pixels that can be mapped from the target image to the individual source images. np.argsort(np.load('count_00000000.npy'))[::-1] will give you the sorted indices of the most overlapping source images.

Use np.load to load the numpy files.

We use the Tanks and Temples dataset for training except the following scenes that are used for evaluation.

  • train/Truck [172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196]
  • intermediate/M60 [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
  • intermediate/Playground [221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252]
  • intermediate/Train [174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248]

The numbers below the scene name indicate the indices of the target images that we used for evaluation.

Citation

Please cite our paper if you find this work useful.

@inproceedings{Riegler2020FVS,
  title={Free View Synthesis},
  author={Riegler, Gernot and Koltun, Vladlen},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Video

Free View Synthesis Video

Owner
Intelligent Systems Lab Org
Intelligent Systems Lab Org
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022