End-to-end beat and downbeat tracking in the time domain.

Related tags

Deep Learningwavebeat
Overview

WaveBeat

End-to-end beat and downbeat tracking in the time domain.

| Paper | Code | Video | Slides |

Setup

First clone the repo.

git clone https://github.com/csteinmetz1/wavebeat.git
cd wavebeat

Setup a virtual environment and activate it. This requires that you use Python 3.8.

python3 -m venv env/
source env/bin/activate

Next install numpy, cython, and aiohttp first, manually.

pip install numpy cython aiohttp

Then install the wavebeat module.

python setup.py install

This will ensure that madmom installs properly, as it currently fails unless cython, numpy, and aiohttp are installed first.

Predicting beats

To begin you will first need to download the pre-trained model here. Place it in the checkpoints/ directory, rename to get the .ckpt file.

cd checkpoints
wget https://zenodo.org/record/5525120/files/wavebeat_epoch%3D98-step%3D24749.ckpt?download=1
mv wavebeat_epoch=98-step=24749.ckpt?download=1 wavebeat_epoch=98-step=24749.ckpt

Functional interface

If you would like to use the functional interface you can create a script and import wavebeat as follows.

from wavebeat.tracker import beatTracker

beat, downbeats = beatTracker('audio.wav')

Script interface

We provide a simple script interface to load an audio file and predict the beat and downbeat locations with a pre-trained model. Run the model by providing a path to an audio file.

python predict.py path_to_audio.wav

Evaluation

In order to run the training and evaluation code you will additionally need to install all of the development requirements.

pip install -r requirements.txt

To recreate our reported results you will first need to have access to the datasets. See the paper for details on where to find them.

Use the command below to run the evaluation on GPU.

python simple_test.py \
--logdir mdoels/wavebeatv1/ \
--ballroom_audio_dir /path/to/BallroomData \
--ballroom_annot_dir /path/to/BallroomAnnotations \
--beatles_audio_dir /path/to/The_Beatles \
--beatles_annot_dir /path/to/The_Beatles_Annotations/beat/The_Beatles \
--hainsworth_audio_dir /path/to/hainsworth/wavs \
--hainsworth_annot_dir /path/to/hainsworth/beat \
--rwc_popular_audio_dir /path/to/rwc_popular/audio \
--rwc_popular_annot_dir /path/to/rwc_popular/beat \
--gtzan_audio_dir /path/to/gtzan/ \
--gtzan_annot_dir /path/to/GTZAN-Rhythm/jams \
--smc_audio_dir /path/to/SMC_MIREX/SMC_MIREX_Audio \
--smc_annot_dir /path/to/SMC_MIREX/SMC_MIREX_Annotations_05_08_2014 \
--num_workers 8 \

Training

To train the model with the same hyperparameters as those used in the paper, assuming the datasets are available, run the following command.

python train.py \
--ballroom_audio_dir /path/to/BallroomData \
--ballroom_annot_dir /path/to/BallroomAnnotations \
--beatles_audio_dir /path/to/The_Beatles \
--beatles_annot_dir /path/to/The_Beatles_Annotations/beat/The_Beatles \
--hainsworth_audio_dir /path/to/hainsworth/wavs \
--hainsworth_annot_dir /path/to/hainsworth/beat \
--rwc_popular_audio_dir /path/to/rwc_popular/audio \
--rwc_popular_annot_dir /path/to/rwc_popular/beat \
--gpus 1 \
--preload \
--precision 16 \
--patience 10 \
--train_length 2097152 \
--eval_length 2097152 \
--model_type dstcn \
--act_type PReLU \
--norm_type BatchNorm \
--channel_width 32 \
--channel_growth 32 \
--augment \
--batch_size 16 \
--lr 1e-3 \
--gradient_clip_val 4.0 \
--audio_sample_rate 22050 \
--num_workers 24 \
--max_epochs 100 \

Cite

If you use this code in your work please consider citing us.

@inproceedings{steinmetz2021wavebeat,
    title={{WaveBeat}: End-to-end beat and downbeat tracking in the time domain},
    author={Steinmetz, Christian J. and Reiss, Joshua D.},
    booktitle={151st AES Convention},
    year={2021}}
Owner
Christian J. Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian J. Steinmetz
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023