Deep learning for spiking neural networks

Overview

A deep learning library for spiking neural networks.

Test status chat on Discord DOI

Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and event-driven - a fundamental difference from artificial neural networks. Norse expands PyTorch with primitives for bio-inspired neural components, bringing you two advantages: a modern and proven infrastructure based on PyTorch and deep learning-compatible spiking neural network components.

Documentation: norse.github.io/norse/

1. Getting started

To try Norse, the best option is to run one of the jupyter notebooks on Google collab.

Alternatively, you can install Norse and run one of the included tasks such as MNIST:

python -m norse.task.mnist

2. Using Norse

Norse presents plug-and-play components for deep learning with spiking neural networks. Here, we describe how to install Norse and start to apply it in your own work. Read more in our documentation.

2.1. Installation

We assume you are using Python version 3.7+, are in a terminal friendly environment, and have installed the necessary requirements. Read more in our documentation.

Method Instructions Prerequisites
From PyPi
pip install norse
Pip
From source
pip install -qU git+https://github.com/norse/norse
Pip, PyTorch
With Docker
docker pull quay.io/norse/norse
Docker
From Conda
conda install -c norse norse
Anaconda or Miniconda

2.2. Running examples

Norse is bundled with a number of example tasks, serving as short, self contained, correct examples (SSCCE). They can be run by invoking the norse module from the base directory. More information and tasks are available in our documentation and in your console by typing: python -m norse.task.<task> --help, where <task> is one of the task names.

  • To train an MNIST classification network, invoke
    python -m norse.task.mnist
  • To train a CIFAR classification network, invoke
    python -m norse.task.cifar10
  • To train the cartpole balancing task with Policy gradient, invoke
    python -m norse.task.cartpole

Norse is compatible with PyTorch Lightning, as demonstrated in the PyTorch Lightning MNIST task variant (requires PyTorch lightning):

python -m norse.task.mnist_pl --gpus=4

2.3. Example: Spiking convolutional classifier

Open In Colab

This classifier is a taken from our tutorial on training a spiking MNIST classifier and achieves >99% accuracy.

import torch, torch.nn as nn
from norse.torch import LICell             # Leaky integrator
from norse.torch import LIFCell            # Leaky integrate-and-fire
from norse.torch import SequentialState    # Stateful sequential layers

model = SequentialState(
    nn.Conv2d(1, 20, 5, 1),      # Convolve from 1 -> 20 channels
    LIFCell(),                   # Spiking activation layer
    nn.MaxPool2d(2, 2),
    nn.Conv2d(20, 50, 5, 1),     # Convolve from 20 -> 50 channels
    LIFCell(),
    nn.MaxPool2d(2, 2),
    nn.Flatten(),                # Flatten to 800 units
    nn.Linear(800, 10),
    LICell(),                    # Non-spiking integrator layer
)

data = torch.randn(8, 1, 28, 28) # 8 batches, 1 channel, 28x28 pixels
output, state = model(data)      # Provides a tuple (tensor (8, 10), neuron state)

2.4. Example: Long short-term spiking neural networks

The long short-term spiking neural networks from the paper by G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass (2018) is another interesting way to apply norse:

import torch
from norse.torch import LSNNRecurrent
# Recurrent LSNN network with 2 input neurons and 10 output neurons
layer = LSNNRecurrent(2, 10)
# Generate data: 20 timesteps with 8 datapoints per batch for 2 neurons
data  = torch.zeros(20, 8, 2)
# Tuple of (output spikes of shape (20, 8, 2), layer state)
output, new_state = layer(data)

3. Why Norse?

Norse was created for two reasons: to 1) apply findings from decades of research in practical settings and to 2) accelerate our own research within bio-inspired learning.

We are passionate about Norse: we strive to follow best practices and promise to maintain this library for the simple reason that we depend on it ourselves. We have implemented a number of neuron models, synapse dynamics, encoding and decoding algorithms, dataset integrations, tasks, and examples. Combined with the PyTorch infrastructure and our high coding standards, we have found Norse to be an excellent tool for modelling scaleable experiments and Norse is actively being used in research.

Finally, we are working to keep Norse as performant as possible. Preliminary benchmarks suggest that Norse achieves excellent performance on small networks of up to ~5000 neurons per layer. Aided by the preexisting investment in scalable training and inference with PyTorch, Norse scales from a single laptop to several nodes on an HPC cluster with little effort. As illustrated by our PyTorch Lightning example task.

Read more about Norse in our documentation.

4. Similar work

The list of projects below serves to illustrate the state of the art, while explaining our own incentives to create and use norse.

  • BindsNET also builds on PyTorch and is explicitly targeted at machine learning tasks. It implements a Network abstraction with the typical 'node' and 'connection' notions common in spiking neural network simulators like nest.
  • cuSNN is a C++ GPU-accelerated simulator for large-scale networks. The library focuses on CUDA and includes spike-time dependent plasicity (STDP) learning rules.
  • decolle implements an online learning algorithm described in the paper "Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)" by J. Kaiser, M. Mostafa and E. Neftci.
  • GeNN compiles SNN network models to NVIDIA CUDA to achieve high-performing SNN model simulations.
  • Long short-term memory Spiking Neural Networks (LSNN) is a tool from the University of Graaz for modelling LSNN cells in Tensorflow. The library focuses on a single neuron and gradient model.
  • Nengo is a neuron simulator, and Nengo-DL is a deep learning network simulator that optimised spike-based neural networks based on an approximation method suggested by Hunsberger and Eliasmith (2016). This approach maps to, but does not build on, the deep learning framework Tensorflow, which is fundamentally different from incorporating the spiking constructs into the framework itself. In turn, this requires manual translations into each individual backend, which influences portability.
  • Neuron Simulation Toolkit (NEST) constructs and evaluates highly detailed simulations of spiking neural networks. This is useful in a medical/biological sense but maps poorly to large datasets and deep learning.
  • PyNN is a Python interface that allows you to define and simulate spiking neural network models on different backends (both software simulators and neuromorphic hardware). It does not currently provide mechanisms for optimisation or arbitrary synaptic plasticity.
  • PySNN is a PyTorch extension similar to Norse. Its approach to model building is slightly different than Norse in that the neurons are stateful.
  • Rockpool is a Python package developed by SynSense for training, simulating and deploying spiking neural networks. It offers both JAX and PyTorch primitives.
  • Sinabs is a PyTorch extension by SynSense. It mainly focuses on convolutions and translation to neuromorphic hardware.
  • SlayerPyTorch is a Spike LAYer Error Reassignment library, that focuses on solutions for the temporal credit problem of spiking neurons and a probabilistic approach to backpropagation errors. It includes support for the Loihi chip.
  • SNN toolbox automates the conversion of pre-trained analog to spiking neural networks. The tool is solely for already trained networks and omits the (possibly platform specific) training.
  • snnTorch is a simulator built on PyTorch, featuring several introduction tutorials on deep learning with SNNs.
  • SpikingJelly is another PyTorch-based spiking neural network simulator. SpikingJelly uses stateful neurons. Example of training a network on MNIST.
  • SpyTorch presents a set of tutorials for training SNNs with the surrogate gradient approach SuperSpike by F. Zenke, and S. Ganguli (2017). Norse implements SuperSpike, but allows for other surrogate gradients and training approaches.
  • s2net is based on the implementation presented in SpyTorch, but implements convolutional layers as well. It also contains a demonstration how to use those primitives to train a model on the Google Speech Commands dataset.

5. Contributing

Contributions are warmly encouraged and always welcome. However, we also have high expectations around the code base so if you wish to contribute, please refer to our contribution guidelines.

6. Credits

Norse is created by

More information about Norse can be found in our documentation. The research has received funding from the EC Horizon 2020 Framework Programme under Grant Agreements 785907 and 945539 (HBP) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation) under Germany's Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

7. Citation

If you use Norse in your work, please cite it as follows:

@software{norse2021,
  author       = {Pehle, Christian and
                  Pedersen, Jens Egholm},
  title        = {{Norse -  A deep learning library for spiking 
                   neural networks}},
  month        = jan,
  year         = 2021,
  note         = {Documentation: https://norse.ai/docs/},
  publisher    = {Zenodo},
  version      = {0.0.6},
  doi          = {10.5281/zenodo.4422025},
  url          = {https://doi.org/10.5281/zenodo.4422025}
}

Norse is actively applied and cited in the literature. We are keeping track of the papers cited by Norse in our documentation.

8. License

LGPLv3. See LICENSE for license details.

You might also like...
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Code for
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Transfer Learning library for Deep Neural Networks.
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Comments
  • Add spack package file

    Add spack package file

    This adds a spack package file that successfully built on our local spack instance… however, this should be probably reflected in your github workflow → should I just try to add it (i.e. don't merge this but I'll update this PR) :)?

    opened by muffgaga 1
Releases(0.0.1)
Owner
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
Kirchhoff-Institute for Physics, Ruprecht-Karls-Universität Heidelberg
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022