State of the Art Neural Networks for Deep Learning

Overview

pyradox

This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2


Installation

pip install git+https://github.com/Ritvik19/pyradox.git

Usage

Modules

Module Description Input Shape Output Shape Usage
Rescale A layer that rescales the input: x_out = (x_in -mu) / sigma Arbitrary Same shape as input check here
Convolution 2D Applies 2D Convolution followed by Batch Normalization (optional) and Dropout (optional) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Densely Connected Layer followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Transition Block A Transition block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Dense Skip Connection Implementation of a skip connection for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
VGG Module Implementation of VGG Modules with slight modifications, Applies multiple 2D Convolution followed by Batch Normalization (optional), Dropout (optional) and MaxPooling 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Conv Implementation of 2D Convolution Layer for Inception Net, Convolution Layer followed by Batch Normalization, Activation and optional Dropout 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Block Implementation on Inception Mixing Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Block A customised implementation of Xception Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Block Implementation of Efficient Net Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Conv Skip Connection Implementation of Skip Connection for Convolution Layer 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Block Customized Implementation of ResNet Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Block Customized Implementation of ResNetV2 Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Block Customized Implementation of ResNeXt Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Conv 2D Implementation of Convolution Layer for Inception Res Net: Convolution2d followed by Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Block Implementation of Inception-ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) block 8 Block 17 Block 35
NAS Net Separable Conv Block Adds 2 blocks of Separable Conv Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Adjust Block Adjusts the input previous path to match the shape of the input
NAS Net Normal A Cell Normal cell for NASNet-A
NAS Net Reduction A Cell Reduction cell for NASNet-A
Mobile Net Conv Block Adds an initial convolution layer with batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Mobile Net Depth Wise Conv Block Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, activation, pointwise convolution, batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inverted Res Block Adds an Inverted ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
SEBlock Adds a Squeeze Excite Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here

ConvNets

Module Description Input Shape Output Shape Usage
Generalized Dense Nets A generalization of Densely Connected Convolutional Networks (Dense Nets) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 121 A modified implementation of Densely Connected Convolutional Network 121 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 169 A modified implementation of Densely Connected Convolutional Network 169 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 201 A modified implementation of Densely Connected Convolutional Network 201 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized VGG A generalization of VGG network 4D tensor with shape (batch_shape, rows, cols, channels) 4D or 2D tensor usage 1 usage 2
VGG 16 A modified implementation of VGG16 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
VGG 19 A modified implementation of VGG19 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
Inception V3 Customized Implementation of Inception Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized Xception Generalized Implementation of XceptionNet (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Net A Customised Implementation of XceptionNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Generalized Implementation of Effiecient Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B0 Customized Implementation of Efficient Net B0 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B1 Customized Implementation of Efficient Net B1 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B2 Customized Implementation of Efficient Net B2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B3 Customized Implementation of Efficient Net B3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B4 Customized Implementation of Efficient Net B4 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B5 Customized Implementation of Efficient Net B5 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B6 Customized Implementation of Efficient Net B6 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B7 Customized Implementation of Efficient Net B7 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Customized Implementation of Res Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 Customized Implementation of Res Net 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 Customized Implementation of Res Net 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 Customized Implementation of Res Net 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Customized Implementation of Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 V2 Customized Implementation of Res Net 50 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 V2 Customized Implementation of Res Net 101 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 V2 Customized Implementation of Res Net 152 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Customized Implementation of Res NeXt 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 50 Customized Implementation of Res NeXt 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 101 Customized Implementation of Res NeXt 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 152 Customized Implementation of Res NeXt 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net V2 Customized Implementation of Inception Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Generalised Implementation of NAS Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Mobile Customized Implementation of NAS Net Mobile 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Large Customized Implementation of NAS Net Large 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
MobileNet Customized Implementation of MobileNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V2 Customized Implementation of Mobile Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V3 Customized Implementation of Mobile Net V3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2

DenseNets

Module Description Input Shape Output Shape Usage
Densely Connected Network Network of Densely Connected Layers followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here
Densely Connected Resnet Network of skip connections for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here
You might also like...
State-of-the-art data augmentation search algorithms in PyTorch
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. FastReID is a research platform that implements state-of-the-art re-identification algorithms.
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

Comments
Releases(v1.0.1)
Owner
Ritvik Rastogi
I have been writing code since 2016, and taught myself a handful of skills and programming languages. I love solving problems by writing code
Ritvik Rastogi
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022