Semantic graph parser based on Categorial grammars

Overview

Lambekseq

semgraph

"Everyone who failed Greek or Latin hates it."


This package is for proving theorems in Categorial grammars (CG) and constructing semantic graphs, i.e., semgraphs on top of that.

Three CG calculuses are supported here (see below). A "proof" is simply a set of atom links, abstracting away from derivaiton details.

Requirements

Add the path to the package to PYTHONPATH. None of the below packages is needed to use the theorem proving facility.

Semantic graphs derive from digraph:

For graph visualization we use

Background

This package is used for the author's PhD thesis in progress.

Categorial grammars:

Semantic graphs:

Theorem Proving

To prove a theorem, use atomlink module. For example, using Lambek Calculus to prove np np\s -> s.

>>> import lambekseq.atomlink as al

>>> con, *pres = 's np np\\s'.split()
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> al.printLinks(con, pres, parser)

This outputs

----------
s_0 <= np_1 np_2\s_3

(np_1, np_2), (s_0, s_3)

Total: 1

You can run atomlink in command line. The following finds proofs for the theorems in input, using abbreviation definitions in abbr.json and Contintuized CCG.

$ python atomlink.py -i input -a abbr.json -c ccg --earlyCollapse

Theorem s qp vp/s qp vp (the first item is the conclusion, the rest the premises) is thus proved as follows:

<class 'lambekseq.cntccg.Cntccg'>
----------
s_0 <= (s_1^np_2)!s_3 (np_4\s_5)/s_6 (s_7^np_8)!s_9 np_10\s_11

(np_10, np_8), (np_2, np_4), (s_0, s_3), (s_1, s_5), (s_11, s_7), (s_6, s_9)

Total: 1

When using Lambek/Displacement/CCG calculus, you can also inspect the proof tree that yields atom links:

>>> con, *pres = 's', 'np', '(np\\s)/np', 'np'
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> parser.buildTree()
>>> parser.printTree()
(np_1, np_2), (np_4, np_5), (s_0, s_3)
........ s_3 -> s_0
........ np_1 -> np_2
.... np_1 np_2\s_3 -> s_0
.... np_5 -> np_4
 np_1 (np_2\s_3)/np_4 np_5 -> s_0

You can export the tree to Bussproofs code for Latex display:

bussproof

>>> print(parser.bussproof)
...
\begin{prooftree}
\EnableBpAbbreviations
        \AXC{s$_{3}$ $\to$ s$_{0}$}
        \AXC{np$_{1}$ $\to$ np$_{2}$}
    \BIC{np$_{1}$\enskip{}np$_{2}$\textbackslash s$_{3}$ $\to$ s$_{0}$}
    \AXC{np$_{5}$ $\to$ np$_{4}$}
\BIC{np$_{1}$\enskip{}(np$_{2}$\textbackslash s$_{3}$)/np$_{4}$\enskip{}np$_{5}$ $\to$ s$_{0}$}
\end{prooftree}

Run python atomlink.py --help for details.

Semantic Parsing

Use semcomp module for semantic parsing. You need to define graph schemata for parts of speech as in schema.json.

>>> from lambekseq.semcomp import SemComp
>>> SemComp.load_lexicon(abbr_path='abbr.json',
                         vocab_path='schema.json')
>>> ex = 'a boy walked a dog'
>>> pos = 'ind n vt ind n'
>>> sc = SemComp(zip(ex.split(), pos.split()), calc='dsp')
>>> sc.unify('s')

Use graphviz's Source to display the semgraphs constructed from the input:

>>> from graphviz import Source
>>> Source(sc.semantics[0].dot_styled)

This outputs
a boy walked a dog

You can inspect the syntax behind this parse:

>>> sc.syntax[0].insight.con, sc.syntax[0].insight.pres
('s_0', ['np_1/n_2', 'n_3', '(np_4\\s_5)/np_6', 'np_7/n_8', 'n_9'])

>>> sc.syntax[0].links
['(n_2, n_3)', '(n_8, n_9)', '(np_1, np_4)', '(np_6, np_7)', '(s_0, s_5)']

See demo/demo.ipynb for more examples.

You can export semgraphs to tikz code that can be visually edited by TikZit.

a boy walked a dog

>>> print(sc.semantics[0].tikz)
\begin{tikzpicture}
\begin{pgfonlayer}{nodelayer}
        \node [style=node] (i1) at (-1.88,2.13) {};
        \node [style=none] (g2u0) at (-2.99,3.07) {};
        \node [style=node] (i0) at (0.99,-2.68) {};
        \node [style=none] (g5u0) at (1.09,-4.13) {};
        \node [style=node] (g3a0) at (0.74,0.43) {};
        \node [style=none] (g3u0) at (2.05,1.19) {};
        \node [style=none] (0) at (-3.04,2.89) {boy};
        \node [style=none] (1) at (0.61,-4.00) {dog};
        \node [style=none] (2) at (-0.66,0.72) {ag};
        \node [style=none] (3) at (0.63,-0.77) {th};
        \node [style=none] (4) at (2.42,1.09) {walked};
\end{pgfonlayer}
\begin{pgfonlayer}{edgelayer}
        \draw [style=arrow] (i1) to (g2u0.center);
        \draw [style=arrow] (i0) to (g5u0.center);
        \draw [style=arrow] (g3a0) to (i1);
        \draw [style=arrow] (g3a0) to (i0);
        \draw [style=arrow] (g3a0) to (g3u0.center);
\end{pgfonlayer}
\end{tikzpicture}
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022