Semantic graph parser based on Categorial grammars

Overview

Lambekseq

semgraph

"Everyone who failed Greek or Latin hates it."


This package is for proving theorems in Categorial grammars (CG) and constructing semantic graphs, i.e., semgraphs on top of that.

Three CG calculuses are supported here (see below). A "proof" is simply a set of atom links, abstracting away from derivaiton details.

Requirements

Add the path to the package to PYTHONPATH. None of the below packages is needed to use the theorem proving facility.

Semantic graphs derive from digraph:

For graph visualization we use

Background

This package is used for the author's PhD thesis in progress.

Categorial grammars:

Semantic graphs:

Theorem Proving

To prove a theorem, use atomlink module. For example, using Lambek Calculus to prove np np\s -> s.

>>> import lambekseq.atomlink as al

>>> con, *pres = 's np np\\s'.split()
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> al.printLinks(con, pres, parser)

This outputs

----------
s_0 <= np_1 np_2\s_3

(np_1, np_2), (s_0, s_3)

Total: 1

You can run atomlink in command line. The following finds proofs for the theorems in input, using abbreviation definitions in abbr.json and Contintuized CCG.

$ python atomlink.py -i input -a abbr.json -c ccg --earlyCollapse

Theorem s qp vp/s qp vp (the first item is the conclusion, the rest the premises) is thus proved as follows:

<class 'lambekseq.cntccg.Cntccg'>
----------
s_0 <= (s_1^np_2)!s_3 (np_4\s_5)/s_6 (s_7^np_8)!s_9 np_10\s_11

(np_10, np_8), (np_2, np_4), (s_0, s_3), (s_1, s_5), (s_11, s_7), (s_6, s_9)

Total: 1

When using Lambek/Displacement/CCG calculus, you can also inspect the proof tree that yields atom links:

>>> con, *pres = 's', 'np', '(np\\s)/np', 'np'
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> parser.buildTree()
>>> parser.printTree()
(np_1, np_2), (np_4, np_5), (s_0, s_3)
........ s_3 -> s_0
........ np_1 -> np_2
.... np_1 np_2\s_3 -> s_0
.... np_5 -> np_4
 np_1 (np_2\s_3)/np_4 np_5 -> s_0

You can export the tree to Bussproofs code for Latex display:

bussproof

>>> print(parser.bussproof)
...
\begin{prooftree}
\EnableBpAbbreviations
        \AXC{s$_{3}$ $\to$ s$_{0}$}
        \AXC{np$_{1}$ $\to$ np$_{2}$}
    \BIC{np$_{1}$\enskip{}np$_{2}$\textbackslash s$_{3}$ $\to$ s$_{0}$}
    \AXC{np$_{5}$ $\to$ np$_{4}$}
\BIC{np$_{1}$\enskip{}(np$_{2}$\textbackslash s$_{3}$)/np$_{4}$\enskip{}np$_{5}$ $\to$ s$_{0}$}
\end{prooftree}

Run python atomlink.py --help for details.

Semantic Parsing

Use semcomp module for semantic parsing. You need to define graph schemata for parts of speech as in schema.json.

>>> from lambekseq.semcomp import SemComp
>>> SemComp.load_lexicon(abbr_path='abbr.json',
                         vocab_path='schema.json')
>>> ex = 'a boy walked a dog'
>>> pos = 'ind n vt ind n'
>>> sc = SemComp(zip(ex.split(), pos.split()), calc='dsp')
>>> sc.unify('s')

Use graphviz's Source to display the semgraphs constructed from the input:

>>> from graphviz import Source
>>> Source(sc.semantics[0].dot_styled)

This outputs
a boy walked a dog

You can inspect the syntax behind this parse:

>>> sc.syntax[0].insight.con, sc.syntax[0].insight.pres
('s_0', ['np_1/n_2', 'n_3', '(np_4\\s_5)/np_6', 'np_7/n_8', 'n_9'])

>>> sc.syntax[0].links
['(n_2, n_3)', '(n_8, n_9)', '(np_1, np_4)', '(np_6, np_7)', '(s_0, s_5)']

See demo/demo.ipynb for more examples.

You can export semgraphs to tikz code that can be visually edited by TikZit.

a boy walked a dog

>>> print(sc.semantics[0].tikz)
\begin{tikzpicture}
\begin{pgfonlayer}{nodelayer}
        \node [style=node] (i1) at (-1.88,2.13) {};
        \node [style=none] (g2u0) at (-2.99,3.07) {};
        \node [style=node] (i0) at (0.99,-2.68) {};
        \node [style=none] (g5u0) at (1.09,-4.13) {};
        \node [style=node] (g3a0) at (0.74,0.43) {};
        \node [style=none] (g3u0) at (2.05,1.19) {};
        \node [style=none] (0) at (-3.04,2.89) {boy};
        \node [style=none] (1) at (0.61,-4.00) {dog};
        \node [style=none] (2) at (-0.66,0.72) {ag};
        \node [style=none] (3) at (0.63,-0.77) {th};
        \node [style=none] (4) at (2.42,1.09) {walked};
\end{pgfonlayer}
\begin{pgfonlayer}{edgelayer}
        \draw [style=arrow] (i1) to (g2u0.center);
        \draw [style=arrow] (i0) to (g5u0.center);
        \draw [style=arrow] (g3a0) to (i1);
        \draw [style=arrow] (g3a0) to (i0);
        \draw [style=arrow] (g3a0) to (g3u0.center);
\end{pgfonlayer}
\end{tikzpicture}
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
LBK 20 Dec 02, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023