Final report with code for KAIST Course KSE 801.

Overview

🧮 KSE 801 Final Report with Code

This is the final report with code for KAIST course KSE 801.

Author: Chuanbo Hua, Federico Berto.

💡 Introduction About the OSC

Orthogonal collocation is a method for the numerical solution of partial differential equations. It uses collocation at the zeros of some orthogonal polynomials to transform the partial differential equation (PDE) to a set of ordinary differential equations (ODEs). The ODEs can then be solved by any method. It has been shown that it is usually advantageous to choose the collocation points as the zeros of the corresponding Jacobi polynomial (independent of the PDE system) [1].

Orthogonal collocation method was famous at 1970s, mainly developed by BA Finlayson [2]. Which is a powerful collocation tool in solving partial differential equations and ordinary differential equations.

Orthogonal collocation method works for more than one variable, but here we only choose one variable cases, since this is more simple to understand and most widely used.

💡 Introduction About the GNN

You can find more details from the jupter notebook within gnn-notebook folder. We include the dataset init, model training and test in the folder.

Reminder: for dataset, we provide another repository for dataset generator. Please refer to repo: https://github.com/DiffEqML/pde-dataset-generator.

🏷 Features

  • Turoritals. We provide several examples, including linear and nonlinear problems to help you to understand how to use it and the performance of this model.
  • Algorithm Explanation. We provide a document to in detail explain how this alogirthm works by example, which we think it's easier to get. For more detail, please refer to Algorithm section.

⚙️ Requirement

Python Version: 3.6 or later
Python Package: numpy, matplotlib, jupyter-notebook/jupyter-lab, dgl, torch

🔧 Structure

  • src: source code for OSC algorithm.
  • fig: algorithm output figures for readme
  • osc-notebook: tutorial jupyter notebooks about our osc method
  • gnn-notebook: tutorial jupyter notebooks about graph neural network
  • script: some training and tesing script of the graph neural network

🔦 How to use

Step 1. Download or Clone this repository.

Step 2. Refer to osc-notebook/example.ipynb, it will introduce how to use this model in detail by examples. Main process would be

  1. collocation1d(): generate collocation points.
  2. generator1d(): generate algebra equations from PDEs to be solved.
  3. numpy.linalg.solve(): solve the algebra equations to get polynomial result,
  4. polynomial1d(): generate simulation value to check the loss.

Step 3. Refer to notebooks under gnn-notebook to get the idea of training graph model.

📈 Examples

One variable, linear, 3 order Loss: <1e-4

One variable, linear, 4 order Loss: 2.2586

One variable, nonlinear Loss: 0.0447

2D PDEs Simulation

Dam Breaking Simulation

📜 Algorithm

Here we are going to simply introduce how 1D OSC works by example. Original pdf please refer to Introduction.pdf in this repository.

📚 References

[1] Orthogonal collocation. (2018, January 30). In Wikipedia. https://en.wikipedia.org/wiki/Orthogonal_collocation.

[2] Carey, G. F., and Bruce A. Finlayson. "Orthogonal collocation on finite elements." Chemical Engineering Science 30.5-6 (1975): 587-596.

Owner
Chuanbo HUA
HIT, POSTECH, KAIST.
Chuanbo HUA
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022