CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Related tags

Deep LearningCLADE
Overview

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

Architecture

ArXiv Paper

Zhentao Tan, Dongdong Chen, Qi Chu, Menglei Chai, Jing Liao, Mingming He, Lu Yuan, Gang Hua, Nenghai Yu

Abstract

Spatially-adaptive normalization SPADE is remarkably successful recently in conditional semantic image synthesis, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE. %Benefiting from this design, CLADE greatly reduces the computation cost while being able to preserve the semantic information in the generation. Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost.

Installation

Clone this repo.

git clone https://github.com/tzt101/CLADE.git
cd CLADE/

This code requires PyTorch 1.6 and python 3+. Please install dependencies by

pip install -r requirements.txt

Dataset Preparation

The Cityscapes, COCO-Stuff and ADE20K dataset can be download and prepared following SPADE. We provide the ADE20K-outdoor dataset selected by ourselves in OneDrive.

To make the distance mask which called intra-class positional encoding map in the paper, you can use the following commands:

python uitl/cal_dist_masks.py --path [Path_to_dataset] --dataset [ade20k | coco | cityscapes]

By default, the distance mask is normalized. If you do not want it, please set --norm no.

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the pretrained models from the OneDrive, save it in checkpoints/. The structure is as follows:
./checkpoints/
    ade20k/
        best_net_G.pth
    ade20k_dist/
        best_net_G.pth
    ade20k_outdoor/
        best_net_G.pth
    ade20k_outdoor_dist/
        best_net_G.pth
    cityscapes/
        best_net_G.pth
    cityscapes_dist/
        best_net_G.pth
    coco/
        best_net_G.pth
    coco_dist/
        best_net_G.pth

_dist means that the model use the additional positional encoding, called CLADE-ICPE in the paper.

  1. Generate the images on the test dataset.
python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset]

[model_name] is the directory name of the checkpoint file downloaded in Step 1, such as ade20k and coco. [dataset] can be on of ade20k, ade20koutdoor, cityscapes and coco. [Path_to_dataset] is the path to the dataset. If you want to test CALDE-ICPE, the command is as follows:

python test.py --name [model_name] --norm_mode clade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset] --add_dist

Training New Models

You can train your own model with the following command:

# To train CLADE and CLADE-ICPE.
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset]
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode clade --dataroot [Path_to_dataset] --add_dist

If you want to test the model during the training step, please set --train_eval. By default, the model every 10 epoch will be test in terms of FID. Finally, the model with best FID score will be saved as best_net_G.pth.

Calculate FID

We provide the code to calculate the FID which is based on rpo. We have pre-calculated the distribution of real images (all images are resized to 256×256 except cityscapes is 512×256) in training set of each dataset and saved them in ./datasets/train_mu_si/. You can run the following command:

python fid_score.py [Path_to_real_image] [Path_to_fake_image] --batch-size 1 --gpu 0 --load_np_name [dataset] --resize [Size]

The provided [dataset] are: ade20k, ade20koutdoor, cityscapes and coco. You can save the new dataset by replacing --load_np_name [dataset] with --save_np_name [dataset].

New Useful Options

The new options are as follows:

  • --use_amp: if specified, use AMP training mode.
  • --train_eval: if sepcified, evaluate the model during training.
  • --eval_dims: the default setting is 2048, Dimensionality of Inception features to use.
  • --eval_epoch_freq: the default setting is 10, frequency of calculate fid score at the end of epochs.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Citation

If you use this code for your research, please cite our papers.

@article{tan2021efficient,
  title={Efficient Semantic Image Synthesis via Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Hua, Gang and Yu, Nenghai},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}
@article{tan2020rethinking,
  title={Rethinking Spatially-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Yu, Nenghai},
  journal={arXiv preprint arXiv:2004.02867},
  year={2020}
}
@article{tan2020semantic,
  title={Semantic Image Synthesis via Efficient Class-Adaptive Normalization},
  author={Tan, Zhentao and Chen, Dongdong and Chu, Qi and Chai, Menglei and Liao, Jing and He, Mingming and Yuan, Lu and Gang Hua and Yu, Nenghai},
  journal={arXiv preprint arXiv:2012.04644},
  year={2020}
}

Acknowledgments

This code borrows heavily from SPADE.

Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022