Code for our ALiBi method for transformer language models.

Overview

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation

This repository contains the code and models for our paper Train Short, Test Long. This file explains how to run our experiments on the WikiText-103 dataset. Read the paper here.

Attention with Linear Biases (ALiBi) is very simple! Instead of adding position embeddings at the bottom of the transformer stack (which we don't) we add a linear bias to each attention score, as depicted in the figure above. The 'm' hyperparam is head-specific and is not learned- it is set at the beginning of training. We have a function that automatically generates these m values given the number of heads in the model.

ALiBi allows the model to be trained on, for example, 1024 tokens, and then do inference on 2048 (or much more) tokens without any finetuning. It's also able to improve performance, even when not extrapolating, in lower resource language modeling settings.

The implementation is very simple.

  1. Remove the position embeddings from the model: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L941
  2. Set up the relative bias matrix, here: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L742
  3. Add the bias matrix to the mask, which is then added in each attention score computation: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L1011
  4. (This might not be necessary in other frameworks.) Move the mask computation to before the layer loop, to make the transformer a tiny bit faster: https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py#L949

Thats it!

Citation:

@misc{press2021train,
      title={Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation}, 
      author={Ofir Press and Noah A. Smith and Mike Lewis},
      year={2021},
      eprint={2108.12409},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

WikiText-103

Requirements and Installation

This repository is a fork of the Fairseq repository and so has the same requirements.

Once you've installed the dependencies, you can install this repository by running:

pip install --editable .

Preparing the data

To download and preprocess the data, run:

cd examples/language_model/
bash prepare-wikitext-103.sh
cd ../..


TEXT=examples/language_model/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Training and Inference

To train a language model with attention with linear baises (ALiBi), on input sequences with 512 tokens, run:

python train.py --task language_modeling     data-bin/wikitext-103     --save-dir wt103/  --arch transformer_lm_wiki103     --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75     --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 --optimizer nag --lr 0.0001 --clip-norm 0.1     --criterion adaptive_loss --seed 1 --fp16     --sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=no_c10d --no-epoch-checkpoints --tokens-per-sample 512 --max-tokens 9216 --update-freq 1  

For input sequences larger than 512 (and up to 2048) tokens, just change the --tokens-per-sample.

To train the model with inputs of 3072 tokens, the --update-freq parameter must be changed to 3 and the --max-tokens parameter must be reduced to 3072.

Saved Checkpoints

If you'd like to download our trained models on WikiText-103, they are available here:

Input Length Link
64 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L64.pt
128 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L128.pt
256 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L256.pt
512 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L512.pt
1024 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L1024.pt
1536 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L1536.pt
2048 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L2048.pt
3072 https://dl.fbaipublicfiles.com/train_short_test_long/wt103/alibi_wt103_L3072.pt

Rename the file you downloaded to checkpoint_best.pt if you'd like to follow the directions below.

Inference

For nonoverlapping evaluation of the validation set, run:

l=1024; fairseq-eval-lm data-bin/wikitext-103/     --path wt103/checkpoint_best.pt  --sample-break-mode none --gen-subset valid   --max-sentences 1 --model-overrides "{'max_tokens':$l, 'tokens_per_sample':$l, 'max_target_positions':$l}"  --tokens-per-sample $l --max-tokens $l  --max-target-positions $l  --context-window 0

where l is set to the length of input subsequences during validation (l=1024 in the above example).

Owner
Ofir Press
PhD student @uwnlp
Ofir Press
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Åžebnem 6 Jan 18, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021