Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

Related tags

Deep LearningDeepCDR
Overview

DeepCDR

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

This work has been accepted to ECCB2020 and was also published in the journal Bioinformatics.

model

DeepCDR is a hybrid graph convolutional network for cancer drug response prediction. It takes both multi-omics data of cancer cell lines and drug structure as inputs and predicts the drug sensitivity (binary or contineous IC50 value).

Requirements

  • Keras==2.1.4
  • TensorFlow==1.13.1
  • hickle >= 2.1.0

Installation

DeepCDR can be downloaded by

git clone https://github.com/kimmo1019/DeepCDR

Installation has been tested in a Linux/MacOS platform.

Instructions

We provide detailed step-by-step instructions for running DeepCDR model including data preprocessing, model training, and model test.

Model implementation

Step 1: Data Preparing

Three types of raw data are required to generate genomic mutation matrix, gene expression matrix and DNA methylation matrix from CCLE database.

CCLE_mutations.csv - Genomic mutation profile from CCLE database

CCLE_expression.csv - Gene expression profile from CCLE database

CCLE_RRBS_TSS_1kb_20180614.txt - DNA methylation profile from CCLE database

The three types of raw data genomic mutation file, gene expression file and DNA methylation file can be downloaded from CCLE database or from our provided Cloud Server.

After data preprocessed, the three following preprocessed files will be in located in data folder.

genomic_mutation_34673_demap_features.csv -- genomic mutation matrix where each column denotes mutation locus and each row denotes a cell line

genomic_expression_561celllines_697genes_demap_features.csv -- gene expression matrix where each column denotes a coding gene and each row denotes a cell line

genomic_methylation_561celllines_808genes_demap_features.csv -- DNA methylation matrix where each column denotes a methylation locus and each row denotes a cell line

We recommend to start from the preprocessed data. Please note that each preprocessed file is in csv format, of which the column and row name are provided to speficy mutation location, gene name, methylation location and corresponding Cell line.

Step 2: Drug feature representation

Each drug in our study will be represented as a graph containing nodes and edges. From the GDSC database, we collected 223 drugs that have unique Pubchem ids. Note that a drug under different screening condition (different GDSC drug id) may share the same Pubchem id. Here, we used deepchem library for extracting node features and gragh of a drug. The node feature (75 dimension) corresponds to a stom in within a drug, which includes atom type, degree and hybridization, etc.

We recorded three types of features in a list as following

drug_feat = [node_feature, adj_list, degree_list]
node_feature - features of all atoms within a drug with size (nb_atom, 75)
adj_list - adjacent list of all atoms within a drug. It denotes the all the neighboring atoms indexs
degree_list - degree list of all atoms within a drug. It denotes the number of neighboring atoms 

The above feature list will be further compressed as pubchem_id.hkl using hickle library.

Please note that we provided the extracted features of 223 drugs from GDSC database, just unzip the drug_graph_feat.zip file in data/GDSC folder

Step 3: DeepCDR model training and testing

Here, we provide both DeepCDR regression and classification model here.

DeepCDR regression model

python run_DeepCDR.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR regression model.

The trained model will be saved in data/checkpoint folder. The overall Pearson's correlation will be calculated.

DeepCDR classification model

python run_DeepCDR_classify.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR_classify.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR lassification model.

The trained model will be saved in data/checkpoint folder. The overall AUC and auPRn will be calculated.

External patient data

We also provided the external patient data downloaded from Firehose Broad GDAC. The patient data were preprocessed the same way as cell line data. The preprocessed data can be downloaded from our Server.

The preprocessed data contain three important files:

mut.csv - Genomic mutation profile of patients

expr.csv - Gene expression profile of patients

methy.csv - DNA methylation profile of patients

Note that the preprocessed patient data (csv format) have exact the same columns names as the three cell line data (genomic_mutation_34673_demap_features.csv, genomic_expression_561celllines_697genes_demap_features.csv, genomic_methylation_561celllines_808genes_demap_features.csv). The only difference is that the row name of patient data were replaced with patient unique barcode instead of cell line name.

Such format-consistent data is easy for external evaluation by repacing the cell line data with patient data.

Predicted missing data

As GDSC database only measured IC50 of part cell line and drug paires. We applied DeepCDR to predicted the missing IC50 values in GDSC database. The predicted results can be find at data/Missing_data_pre/records_pre_all.txt. Each record represents a predicted drug and cell line pair. The records were sorted by the predicted median IC50 values of a drug (see Fig.2E).

Contact

If you have any question regard our code or data, please do not hesitate to open a issue or directly contact me ([email protected])

Cite

If you used our work in your research, please consider citing our paper

Qiao Liu, Zhiqiang Hu, Rui Jiang, Mu Zhou, DeepCDR: a hybrid graph convolutional network for predicting cancer drug response, Bioinformatics, 2020, 36(2):i911-i918.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Owner
Qiao Liu
Qiao Liu
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Pytorch Lightning 1.2k Jan 06, 2023
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022