On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

Overview

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

This repository contains the evaluation code and alternative pseudo ground truth poses as used in our ICCV 2021 paper.

video overview

Pseudo Ground Truth for 7Scenes and 12Scenes

We generated alternative SfM-based pseudo ground truth (pGT) using Colmap to supplement the original D-SLAM-based pseudo ground truth of 7Scenes and 12Scenes.

Pose Files

Please find our SfM pose files in the folder pgt. We separated pGT files wrt datasets, individual scenes and the test/training split. Each file contains one line per image that follows the format:

rgb_file qw qx qy qz tx ty tz f

Entries q and t represent the pose as quaternion and translation vector. The pose maps world coordinates to camera coordinates, i.e. p_cam = R(q) p_world + t. This is the same convention used by Colmap. Entry f represents the focal length of the RGB sensor. f was re-estimated by COLMAP and can differ slightly per scene.

We also provide the original D-SLAM pseudo ground truth in this format to be used with our evaluation code below.

Full Reconstructions

The Colmap 3D models are available here:

Note that the Google Drive folder that currently hosts the reconstructions has a daily download limit. We are currently looking into alternative hosting options.

License Information

Since the 3D models and pose files are derived from the original datasets, they are released under the same licences as the 7Scenes and 12Scenes datasets. Before using the datasets, please check the licenses (see the websites of the datasets or the README.md files that come with the 3D models).

Evaluation Code

The main results of our paper can be reproduced using evaluate_estimates.py. The script calculates either the pose error (max of rotation and translation error) or the DCRE error (dense reprojection error). The script prints the recall at a custom threshold to the console, and produces a cumulative error plot as a PDF file.

As input, the script expects a configuration file that points to estimated poses of potentially multiple algorithms and to the pseudo ground truth that these estimates should be compared to. We provide estimated poses of all methods shown in our paper (ActiveSearch, HLoc, R2D2 and DSAC*) in the folder estimates.
These pose files follow the same format as our pGT files described previously, but omit the final f entry.

Furthermore, we provide example config files corresponding to the main experiments in our paper.

Call python evaluate_estimates.py --help for all available options.

For evaluation on 7Scenes, using our SfM pGT, call:

python evaluate_estimates.py config_7scenes_sfm_pgt.json

This produces a new file config_7scenes_sfm_pgt_pose_err.pdf:

For the corresponding plot using the original D-SLAM pGT, call:

python evaluate_estimates.py config_7scenes_dslam_pgt.json

Interpreting the Results

The plots above show very different rankings across methods. Yet, as we discuss in our paper, both plots are valid since no version of the pGT is clearly superior to the other. Furthermore, it appears plausible that any version of pGT is only trustworthy up to a certain accuracy threshold. However, it is non-obvious and currently unknown, how to determine such a trust threshold. We thus strongly discourage to draw any conclusions (beyond that a method might be overfitting to the imperfections of the pseudo ground truth) from the smaller thresholds alone.

We advise to always evaluate methods under both versions of the pGT, and to show both evaluation results in juxtaposition unless specific reasons are given why one version of the pGT is preferred.

DCRE Computation

DCRE computation is triggered with the option --error_type dcre_max or --error_type dcre_mean (see our paper for details). DCRE needs access to the original 7Scenes or 12Scenes data as it requires depth maps. We provide two utility scripts, setup_7scenes.py and setup_12scenes.py, that will download and unpack the associated datasets. Make sure to check each datasets license, via the links above, before downloading and using them.

Note I: The original depth files of 7Scenes are not calibrated, but the DCRE requires calibrated files. The setup script will apply the Kinect calibration parameters found here to register depth to RGB. This essentially involves re-rendering the depth maps which is implemented in native Python and takes a long time due to the large frame count in 7Scenes (several hours). However, this step has to be done only once.

Note II: The DCRE computation by evaluate_estimates.py is implemented on the GPU and reasonably fast. However, due to the large frame count in 7Scenes it can still take considerable time. The parameter --error_max_images limits the max. number of frames used to calculate recall and cumulative errors. The default value of 1000 provides a good tradeoff between accuracy and speed. Use --error_max_images -1 to use all images which is most accurate but slow for 7Scenes.

Uploading Your Method's Estimates

We are happy to include updated evaluation results or evaluation results of new methods in this repository. This would enable easy comparisons across methods with unified evaluation code, as we progress in the field.

If you want your results included, please provide estimates of your method under both pGT versions via a pull request. Please add your estimation files to a custom sub-folder under èstimates_external, following our pose file convention described above. We would also ask that you provide a text file that links your results to a publication or tech report, or contains a description of how you obtained these results.

estimates_external
├── someone_elses_method
└── your_method
    ├── info_your_method.txt
    ├── dslam
    │   ├── 7scenes
    │   │   ├── chess_your_method.txt
    │   │   ├── fire_your_method.txt
    │   │   ├── ...
    │   └── 12scenes
    │       ├── ...
    └── sfm
        ├── ...

Dependencies

This code requires the following python packages, and we tested it with the package versions in brackets

pytorch (1.6.0)
opencv (3.4.2)
scikit-image (0.16.2)

The repository contains an environment.yml for the use with Conda:

conda env create -f environment.yml
conda activate pgt

License Information

Our evaluation code and data utility scripts are based on parts of DSAC*, and we provide our code under the same BSD-3 license.

Citation

If you are using either the evaluation code or the Structure-from-Motion pseudo GT for the 7Scenes or 12Scenes datasets, please cite the following work:

@InProceedings{Brachmann2021ICCV,
    author = {Brachmann, Eric and Humenberger, Martin and Rother, Carsten and Sattler, Torsten},
    title = {{On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization}},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year = {2021},
}
Owner
Torsten Sattler
I am a senior researcher at CIIRC, the Czech Institute of Informatics, Robotics and Cybernetics, building my own research group.
Torsten Sattler
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022