On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

Overview

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

This repository contains the evaluation code and alternative pseudo ground truth poses as used in our ICCV 2021 paper.

video overview

Pseudo Ground Truth for 7Scenes and 12Scenes

We generated alternative SfM-based pseudo ground truth (pGT) using Colmap to supplement the original D-SLAM-based pseudo ground truth of 7Scenes and 12Scenes.

Pose Files

Please find our SfM pose files in the folder pgt. We separated pGT files wrt datasets, individual scenes and the test/training split. Each file contains one line per image that follows the format:

rgb_file qw qx qy qz tx ty tz f

Entries q and t represent the pose as quaternion and translation vector. The pose maps world coordinates to camera coordinates, i.e. p_cam = R(q) p_world + t. This is the same convention used by Colmap. Entry f represents the focal length of the RGB sensor. f was re-estimated by COLMAP and can differ slightly per scene.

We also provide the original D-SLAM pseudo ground truth in this format to be used with our evaluation code below.

Full Reconstructions

The Colmap 3D models are available here:

Note that the Google Drive folder that currently hosts the reconstructions has a daily download limit. We are currently looking into alternative hosting options.

License Information

Since the 3D models and pose files are derived from the original datasets, they are released under the same licences as the 7Scenes and 12Scenes datasets. Before using the datasets, please check the licenses (see the websites of the datasets or the README.md files that come with the 3D models).

Evaluation Code

The main results of our paper can be reproduced using evaluate_estimates.py. The script calculates either the pose error (max of rotation and translation error) or the DCRE error (dense reprojection error). The script prints the recall at a custom threshold to the console, and produces a cumulative error plot as a PDF file.

As input, the script expects a configuration file that points to estimated poses of potentially multiple algorithms and to the pseudo ground truth that these estimates should be compared to. We provide estimated poses of all methods shown in our paper (ActiveSearch, HLoc, R2D2 and DSAC*) in the folder estimates.
These pose files follow the same format as our pGT files described previously, but omit the final f entry.

Furthermore, we provide example config files corresponding to the main experiments in our paper.

Call python evaluate_estimates.py --help for all available options.

For evaluation on 7Scenes, using our SfM pGT, call:

python evaluate_estimates.py config_7scenes_sfm_pgt.json

This produces a new file config_7scenes_sfm_pgt_pose_err.pdf:

For the corresponding plot using the original D-SLAM pGT, call:

python evaluate_estimates.py config_7scenes_dslam_pgt.json

Interpreting the Results

The plots above show very different rankings across methods. Yet, as we discuss in our paper, both plots are valid since no version of the pGT is clearly superior to the other. Furthermore, it appears plausible that any version of pGT is only trustworthy up to a certain accuracy threshold. However, it is non-obvious and currently unknown, how to determine such a trust threshold. We thus strongly discourage to draw any conclusions (beyond that a method might be overfitting to the imperfections of the pseudo ground truth) from the smaller thresholds alone.

We advise to always evaluate methods under both versions of the pGT, and to show both evaluation results in juxtaposition unless specific reasons are given why one version of the pGT is preferred.

DCRE Computation

DCRE computation is triggered with the option --error_type dcre_max or --error_type dcre_mean (see our paper for details). DCRE needs access to the original 7Scenes or 12Scenes data as it requires depth maps. We provide two utility scripts, setup_7scenes.py and setup_12scenes.py, that will download and unpack the associated datasets. Make sure to check each datasets license, via the links above, before downloading and using them.

Note I: The original depth files of 7Scenes are not calibrated, but the DCRE requires calibrated files. The setup script will apply the Kinect calibration parameters found here to register depth to RGB. This essentially involves re-rendering the depth maps which is implemented in native Python and takes a long time due to the large frame count in 7Scenes (several hours). However, this step has to be done only once.

Note II: The DCRE computation by evaluate_estimates.py is implemented on the GPU and reasonably fast. However, due to the large frame count in 7Scenes it can still take considerable time. The parameter --error_max_images limits the max. number of frames used to calculate recall and cumulative errors. The default value of 1000 provides a good tradeoff between accuracy and speed. Use --error_max_images -1 to use all images which is most accurate but slow for 7Scenes.

Uploading Your Method's Estimates

We are happy to include updated evaluation results or evaluation results of new methods in this repository. This would enable easy comparisons across methods with unified evaluation code, as we progress in the field.

If you want your results included, please provide estimates of your method under both pGT versions via a pull request. Please add your estimation files to a custom sub-folder under èstimates_external, following our pose file convention described above. We would also ask that you provide a text file that links your results to a publication or tech report, or contains a description of how you obtained these results.

estimates_external
├── someone_elses_method
└── your_method
    ├── info_your_method.txt
    ├── dslam
    │   ├── 7scenes
    │   │   ├── chess_your_method.txt
    │   │   ├── fire_your_method.txt
    │   │   ├── ...
    │   └── 12scenes
    │       ├── ...
    └── sfm
        ├── ...

Dependencies

This code requires the following python packages, and we tested it with the package versions in brackets

pytorch (1.6.0)
opencv (3.4.2)
scikit-image (0.16.2)

The repository contains an environment.yml for the use with Conda:

conda env create -f environment.yml
conda activate pgt

License Information

Our evaluation code and data utility scripts are based on parts of DSAC*, and we provide our code under the same BSD-3 license.

Citation

If you are using either the evaluation code or the Structure-from-Motion pseudo GT for the 7Scenes or 12Scenes datasets, please cite the following work:

@InProceedings{Brachmann2021ICCV,
    author = {Brachmann, Eric and Humenberger, Martin and Rother, Carsten and Sattler, Torsten},
    title = {{On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization}},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year = {2021},
}
Owner
Torsten Sattler
I am a senior researcher at CIIRC, the Czech Institute of Informatics, Robotics and Cybernetics, building my own research group.
Torsten Sattler
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022