traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Overview

traiNNer

Python Version License DeepSource Issues PR's Accepted

traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Here you will find: boilerplate code for training and testing computer vision (CV) models, different methods and strategies integrated in a single pipeline and modularity to add and remove components as needed, including new network architectures and templates for different training strategies. The code is under a constant state of change, so if you find an issue or bug please open a issue, a discussion or write in one of the Discord channels for help.

Different from other repositories, here the focus is not only on repeating previous papers' results, but to enable more people to train their own models more easily, using their own custom datasets, as well as integrating new ideas to increase the performance of the models. For these reasons, a lot of the code is made in order to automatically take care of fixing potential issues, whenever possible.

Details of the currently supported architectures can be found here.

For a changelog and general list of features of this repository, check here.

Table of Contents

  1. Dependencies
  2. Codes
  3. Usage
  4. Pretrained models
  5. Datasets
  6. How to help

Dependencies

  • Python 3 (Recommend to use Anaconda)
  • PyTorch >= 0.4.0. PyTorch >= 1.7.0 required to enable certain features (SWA, AMP, others), as well as torchvision.
  • NVIDIA GPU + CUDA
  • Python packages: pip install numpy opencv-python
  • JSON files can be used for the configuration option files, but in order to use YAML, the PyYAML python package is also a dependency: pip install PyYAML

Optional Dependencies

Codes

This repository is a full framework for training different kinds of networks, with multiple enhancements and options. In ./codes you will find a more detailed explaination of the code framework ).

You will also find:

  1. Some useful scripts. More details in ./codes/scripts.
  2. Evaluation codes, e.g., PSNR/SSIM metric.

Additionally, it is complemented by other repositories like DLIP, that can be used in order to extract estimated kernels and noise patches from real images, using a modified KernelGAN and patches extraction code. Detailed instructions about how to use the estimated kernels are available here

Usage

Training

Data and model preparation

In order to train your own models, you will need to create a dataset consisting of images, and prepare these images, both considering IO constrains, as well as the task the model should target. Detailed data preparation can be seen in codes/data.

Pretrained models that can be used for fine-tuning are available.

Detailed instructions on how to train are also available.

Augmentations strategies for training real-world models (blind SR) like Real-SR, BSRGAN and Real-ESRGAN are provided via presets that define the blur, resizing and noise configurations, but many more augmentations are available to define custom training strategies.

How to Test

For simple testing

The recommended way to get started with some of the models produced by the training codes available in this repository is by getting the pretrained models to be tested and run them in the companion repository iNNfer, with the purpose of model inference.

Additionally, you can also use a GUI (for ESRGAN models, for video) or a smaller repo for inference (for ESRGAN, for video).

If you are interested in obtaining results that can automatically return evaluation metrics, it is also possible to do inference of batches of images and some additional options with the instructions in how to test.

Pretrained models

The most recent community pretrained models can be found in the Wiki, Discord channels (game upscale and animation upscale) and nmkd's models.

For more details about the original and experimental pretrained models, please see pretrained models.

You can put the downloaded models in the default experiments/pretrained_models directory and use them in the options files with the corresponding network architectures.

Model interpolation

Models that were trained using the same pretrained model or are derivates of the same pretrained model are able to be interpolated to combine the properties of both. The original author demostrated this by interpolating the PSNR pretrained model (which is not perceptually good, but results in smooth images) with the ESRGAN resulting models that have more details but sometimes is excessive to control a balance in the resulting images, instead of interpolating the resulting images from both models, giving much better results.

The capabilities of linearly interpolating models are also explored in "DNI": Deep Network Interpolation for Continuous Imagery Effect Transition (CVPR19) with very interesting results and examples. The script for interpolation can be found in the net_interp.py file. This is an alternative to create new models without additional training and also to create pretrained models for easier fine tuning. Below is an example of interpolating between a PSNR-oriented and a perceptual ESRGAN model (first row), and examples of interpolating CycleGAN style transfer models.

More details and explanations of interpolation can be found here in the Wiki.

Datasets

Many datasets are publicly available and used to train models in a way that can be benchmarked and compared with other models. You are also able to create your own datasets with your own images.

Any dataset can be augmented to expose the model to information that might not be available in the images, such a noise and blur. For this reason, a data augmentation pipeline has been added to the options in this repository. It is also possible to add other types of augmentations, such as Batch Augmentations to apply them to minibatches instead of single images. Lastly, if your dataset is small, you can make use of Differential Augmentations to allow the discriminator to extract more information from the available images and train better models. More information can be found in the augmentations document.

How to help

There are multiple ways to help this project. The first one is by using it and trying to train your own models. You can open an issue if you find any bugs or start a discussion if you have ideas, questions or would like to showcase your results.

If you would like to contribute in the form of adding or fixing code, you can do so by cloning this repo and creating a PR. Ideally, it's better for PR to be precise and not changing many parts of the code at the same time, so it can be reviewed and tested. If possible, open an issue or discussion prior to creating the PR and we can talk about any ideas.

You can also join the discord servers and share results and questions with other users.

Lastly, after it has been suggested many times before, now there are options to donate to show your support to the project and help stir it in directions that will make it even more useful. Below you will find those options that were suggested.

Patreon

Bitcoin Address: 1JyWsAu7aVz5ZeQHsWCBmRuScjNhCEJuVL

Ethereum Address: 0xa26AAb3367D34457401Af3A5A0304d6CbE6529A2


Additional Help

If you have any questions, we have a couple of discord servers (game upscale and animation upscale) where you can ask them and a Wiki with more information.


Acknowledgement

Code architecture is originally inspired by pytorch-cyclegan and the first version of BasicSR.

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023