Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Overview

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

This repository contains the code for our ICCV2021 paper by Jia-Ren Chang, Yong-Sheng Chen, and Wei-Chen Chiu.

Paper Arxiv Link

Contents

  1. Introduction
  2. Results
  3. Usage
  4. Contacts

Introduction

In this work, we introduce cycle-consistency in facial characteristics as free supervisory signal to learn facial representations from unlabeled facial images. The learning is realized by superimposing the facial motion cycle-consistency and identity cycle-consistency constraints. The main idea of the facial motion cycle-consistency is that, given a face with expression, we can perform de-expression to a neutral face via the removal of facial motion and further perform re-expression to reconstruct back to the original face. The main idea of the identity cycle-consistency is to exploit both de-identity into mean face by depriving the given neutral face of its identity via feature re-normalization and re-identity into neutral face by adding the personal attributes to the mean face.

Results

More visualization

Emotion recognition

We use linear protocol to evaluate learnt representations for emotion recognition. We report accuracy (%) for two dataset.

Method FER-2013 RAF-DB
Ours 48.76 % 71.01 %
FAb-Net 46.98 % 66.72 %
TCAE 45.05 % 65.32 %
BMVC’20 47.61 % 58.86 %

Head pose regression

We use linear regression to evaluate learnt representations for head pose regression.

Method Yaw Pitch Roll
Ours 11.70 12.76 12.94
FAb-Net 13.92 13.25 14.51
TCAE 21.75 14.57 14.83
BMVC’20 22.06 13.50 15.14

Person recognition

We directly adopt learnt representation for person recognition.

Method LFW CPLFW
Ours 73.72 % 58.52 %
VGG-like 71.48 % -
LBP 56.90 % 51.50 %
HoG 62.73 % 51.73 %

Frontalization

The frontalization results from LFW dataset.

Image-to-image Translation

The image-to-image translation results.

Usage

From Others

Thanks to all the authors of these awesome repositories. SSIM Optical Flow Visualization

Download Pretrained Model

Google Drive

Test translation

python test_translation.py --loadmodel (pretrained model) \

and you can get like below

Replicate RAF-DB results

Download pretrained model and RAF-DB

python RAF_classify.py --loadmodel (pretrained model) \
                       --datapath (your RAF dataset path) \
                       --savemodel (your path for saving)

You can get 70~71% accuracy with basic emotion classification (7 categories) using linear protocol.

Contacts

[email protected]

Any discussions or concerns are welcomed!

Owner
Jia-Ren Chang
Jia-Ren Chang
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023