Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

Related tags

Deep LearningGPR1200
Overview

GPR1200 Dataset

GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv)

Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus Jung

Visual Computing Group HTW Berlin

main_pic

Similar to most vision related tasks, deep learning models have taken over in the field of content-based image retrieval (CBIR) over the course of the last decade. However, most publications that aim to optimise neural networks for CBIR, train and test their models on domain specific datasets. It is therefore unclear, if those networks can be used as a general-purpose image feature extractor. After analyzing popular image retrieval test sets we decided to manually curate GPR1200, an easy to use and accessible but challenging benchmark dataset with 1200 categories and 10 class examples. Classes and images were manually selected from six publicly available datasets of different image areas, ensuring high class diversity and clean class boundaries.

Results:

teaser teaser

Download Instructions:

The images are available under this link. Unziping the content will result in an "images" folder, which contains all 12000 images. Each filename consists of a combination of the GPR1200 category ID and the original name:
"{category ID}_{original name}.jpg

Evaluation Protocol:

Images are not devided into query and index sets for evaluation and the full mean average precision value is used as the metric. Instructions and evalution code can be found in this repository.

This notebook contains evaluation code for several models with Pytorch and the awesome timm library.

If you have precomputed embeddings for the dataset, you can run the eval script with the following command:

python ./eval/evaluate.py --evalfile-path '/path/to/embeddings' \
                            --mode 'embeddings' \
                            --dataset-path '/path/to/GPR1200/images'

In this case an evaluation file has to be provided that contains embeddings in the order created by the GPR1200 dataset object. This can be a npy file or a pickable python list.

GPR1200_dataset = GPR1200('/path/to/GPR1200/images')

If you work with local features, it is best to provide nearest neighbours indices. For this case run the evaluation script in the indices mode:

python ./eval/evaluate.py --evalfile-path='/path/to/indices' \
                            --mode='indices' \
                            --dataset-path='/path/to/GPR1200/images'

License Informations:

This dataset is available for for non-commercial research and educational purposes only and the copyright belongs to the original owners. If any of the images belongs to you and you would like it removed, please kindly inform us, we will remove it from our dataset immediately. Since all images were curated from other publicly available datasets, please visit the respective dataset websites for additional license informations.

Owner
Visual Computing Group
Visual Computing Group at the HTW Berlin
Visual Computing Group
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022