Files for a tutorial to train SegNet for road scenes using the CamVid dataset

Overview

SegNet and Bayesian SegNet Tutorial

This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian SegNet' tutorials here: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html

Please see this link for detailed instructions.

Caffe-SegNet

SegNet requires a modified version of Caffe to run. Please download and compile caffe-segnet to use these models: https://github.com/alexgkendall/caffe-segnet

This version supports cudnn v2 acceleration. @TimoSaemann has a branch supporting a more recent version of Caffe (Dec 2016) with cudnn v5.1: https://github.com/TimoSaemann/caffe-segnet-cudnn5

Getting Started with Live Demo

If you would just like to try out an example model, then you can find the model used in the SegNet webdemo in the folder Example_Models/. You will need to download the weights separately using the link in the SegNet Model Zoo.

First open Scripts/webcam_demo.py and edit line 14 to match the path to your installation of SegNet. You will also need a webcam, or alternatively edit line 39 to input a video file instead. To run the demo use the command:

python Scripts/webcam_demo.py --model Example_Models/segnet_model_driving_webdemo.prototxt --weights /Example_Models/segnet_weights_driving_webdemo.caffemodel --colours /Scripts/camvid12.png

Getting Started with Docker

Use docker to compile caffe and run the examples. In order to run caffe on the gpu using docker, please install nvidia-docker (see https://github.com/NVIDIA/nvidia-docker or using ansbile: https://galaxy.ansible.com/ryanolson/nvidia-docker/)

to run caffe on the CPU:

docker build -t bvlc/caffe:cpu ./cpu 
# check if working
docker run -ti bvlc/caffe:cpu caffe --version
# get a bash in container to run examples
docker run -ti --volume=$(pwd):/SegNet -u $(id -u):$(id -g) bvlc/caffe:cpu bash

to run caffe on the GPU:

docker build -t bvlc/caffe:gpu ./gpu
# check if working
docker run -ti bvlc/caffe:gpu caffe device_query -gpu 0
# get a bash in container to run examples
docker run -ti --volume=$(pwd):/SegNet -u $(id -u):$(id -g) bvlc/caffe:gpu bash

Example Models

A number of example models for indoor and outdoor road scene understanding can be found in the SegNet Model Zoo.

Publications

For more information about the SegNet architecture:

http://arxiv.org/abs/1511.02680 Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015.

http://arxiv.org/abs/1511.00561 Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." PAMI, 2017.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here: http://creativecommons.org/licenses/by-nc/4.0/

Contact

Alex Kendall

[email protected]

Cambridge University

Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021