PyTorch implementation of Densely Connected Time Delay Neural Network

Overview

Densely Connected Time Delay Neural Network

PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Connected Time Delay Neural Network for Speaker Verification" (INTERSPEECH 2020).

What's New ⚠️

  • [2021-02-14] We add an impl option in TimeDelay, now you can choose:

    • 'conv': implement TDNN by F.conv1d.
    • 'linear': implement TDNN by F.unfold and F.linear.

    Check this commit for more information. Note the pre-trained models of 'conv' have not been uploaded yet.

  • [2021-02-04] TDNN (default implementation) in this repo is slower than nn.Conv1d, but we adopted it because:

    • TDNN in this repo was also used to create F-TDNN models that are not perfectly supported by nn.Conv1d (asymmetric paddings).
    • nn.Conv1d(dilation>1, bias=True) is slow in training.

    However, we do not use F-TDNN here, and we always set bias=False in D-TDNN. So, we are considering uploading a new version of TDNN soon (2021-02-14 updated).

  • [2021-02-01] Our new paper is accepted by ICASSP 2021.

    Y.-Q. Yu, S. Zheng, H. Suo, Y. Lei, and W.-J. Li, "CAM: Context-Aware Masking for Robust Speaker Verification"

    CAM outperforms statistics-and-selection (SS) in terms of speed and accuracy.

Pretrained Models

We provide the pretrained models which can be used in many tasks such as:

  • Speaker Verification
  • Speaker-Dependent Speech Separation
  • Multi-Speaker Text-to-Speech
  • Voice Conversion

D-TDNN & D-TDNN-SS

Usage

Data preparation

You can either use Kaldi toolkit:

  • Download VoxCeleb1 test set and unzip it.
  • Place prepare_voxceleb1_test.sh under $kaldi_root/egs/voxceleb/v2 and change the $datadir and $voxceleb1_root in it.
  • Run chmod +x prepare_voxceleb1_test.sh && ./prepare_voxceleb1_test.sh to generate 30-dim MFCCs.
  • Place the trials under $datadir/test_no_sil.

Or checkout the kaldifeat branch if you do not want to install Kaldi.

Test

  • Download the pretrained D-TDNN model and run:
python evaluate.py --root $datadir/test_no_sil --model D-TDNN --checkpoint dtdnn.pth --device cuda

Evaluation

VoxCeleb1-O

Model Emb. Params (M) Loss Backend EER (%) DCF_0.01 DCF_0.001
TDNN 512 4.2 Softmax PLDA 2.34 0.28 0.38
E-TDNN 512 6.1 Softmax PLDA 2.08 0.26 0.41
F-TDNN 512 12.4 Softmax PLDA 1.89 0.21 0.29
D-TDNN 512 2.8 Softmax Cosine 1.81 0.20 0.28
D-TDNN-SS (0) 512 3.0 Softmax Cosine 1.55 0.20 0.30
D-TDNN-SS 512 3.5 Softmax Cosine 1.41 0.19 0.24
D-TDNN-SS 128 3.1 AAM-Softmax Cosine 1.22 0.13 0.20

Citation

If you find D-TDNN helps your research, please cite

@inproceedings{DBLP:conf/interspeech/YuL20,
  author    = {Ya-Qi Yu and
               Wu-Jun Li},
  title     = {Densely Connected Time Delay Neural Network for Speaker Verification},
  booktitle = {Annual Conference of the International Speech Communication Association (INTERSPEECH)},
  pages     = {921--925},
  year      = {2020}
}

Revision of the Paper ⚠️

References:

[16] X. Li, W. Wang, X. Hu, and J. Yang, "Selective Kernel Networks," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 510-519.

Comments
  • size mismatch while loading pre-trained weights

    size mismatch while loading pre-trained weights

    RuntimeError: Error(s) in loading state_dict for DTDNN: Missing key(s) in state_dict: "xvector.tdnn.linear.bias", "xvector.dense.linear.bias". size mismatch for xvector.tdnn.linear.weight: copying a param with shape torch.Size([128, 30, 5]) from checkpoint, the shape in current model is torch.Size([128, 150]). size mismatch for xvector.block1.tdnnd1.linear1.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([128, 128]). size mismatch for xvector.block1.tdnnd1.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd2.linear1.weight: copying a param with shape torch.Size([128, 192, 1]) from checkpoint, the shape in current model is torch.Size([128, 192]). size mismatch for xvector.block1.tdnnd2.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd3.linear1.weight: copying a param with shape torch.Size([128, 256, 1]) from checkpoint, the shape in current model is torch.Size([128, 256]). size mismatch for xvector.block1.tdnnd3.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd4.linear1.weight: copying a param with shape torch.Size([128, 320, 1]) from checkpoint, the shape in current model is torch.Size([128, 320]). size mismatch for xvector.block1.tdnnd4.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd5.linear1.weight: copying a param with shape torch.Size([128, 384, 1]) from checkpoint, the shape in current model is torch.Size([128, 384]). size mismatch for xvector.block1.tdnnd5.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block1.tdnnd6.linear1.weight: copying a param with shape torch.Size([128, 448, 1]) from checkpoint, the shape in current model is torch.Size([128, 448]). size mismatch for xvector.block1.tdnnd6.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.transit1.linear.weight: copying a param with shape torch.Size([256, 512, 1]) from checkpoint, the shape in current model is torch.Size([256, 512]). size mismatch for xvector.block2.tdnnd1.linear1.weight: copying a param with shape torch.Size([128, 256, 1]) from checkpoint, the shape in current model is torch.Size([128, 256]). size mismatch for xvector.block2.tdnnd1.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd2.linear1.weight: copying a param with shape torch.Size([128, 320, 1]) from checkpoint, the shape in current model is torch.Size([128, 320]). size mismatch for xvector.block2.tdnnd2.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd3.linear1.weight: copying a param with shape torch.Size([128, 384, 1]) from checkpoint, the shape in current model is torch.Size([128, 384]). size mismatch for xvector.block2.tdnnd3.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd4.linear1.weight: copying a param with shape torch.Size([128, 448, 1]) from checkpoint, the shape in current model is torch.Size([128, 448]). size mismatch for xvector.block2.tdnnd4.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd5.linear1.weight: copying a param with shape torch.Size([128, 512, 1]) from checkpoint, the shape in current model is torch.Size([128, 512]). size mismatch for xvector.block2.tdnnd5.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd6.linear1.weight: copying a param with shape torch.Size([128, 576, 1]) from checkpoint, the shape in current model is torch.Size([128, 576]). size mismatch for xvector.block2.tdnnd6.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd7.linear1.weight: copying a param with shape torch.Size([128, 640, 1]) from checkpoint, the shape in current model is torch.Size([128, 640]). size mismatch for xvector.block2.tdnnd7.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd8.linear1.weight: copying a param with shape torch.Size([128, 704, 1]) from checkpoint, the shape in current model is torch.Size([128, 704]). size mismatch for xvector.block2.tdnnd8.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd9.linear1.weight: copying a param with shape torch.Size([128, 768, 1]) from checkpoint, the shape in current model is torch.Size([128, 768]). size mismatch for xvector.block2.tdnnd9.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd10.linear1.weight: copying a param with shape torch.Size([128, 832, 1]) from checkpoint, the shape in current model is torch.Size([128, 832]). size mismatch for xvector.block2.tdnnd10.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd11.linear1.weight: copying a param with shape torch.Size([128, 896, 1]) from checkpoint, the shape in current model is torch.Size([128, 896]). size mismatch for xvector.block2.tdnnd11.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.block2.tdnnd12.linear1.weight: copying a param with shape torch.Size([128, 960, 1]) from checkpoint, the shape in current model is torch.Size([128, 960]). size mismatch for xvector.block2.tdnnd12.linear2.weight: copying a param with shape torch.Size([64, 128, 3]) from checkpoint, the shape in current model is torch.Size([64, 384]). size mismatch for xvector.transit2.linear.weight: copying a param with shape torch.Size([512, 1024, 1]) from checkpoint, the shape in current model is torch.Size([512, 1024]). size mismatch for xvector.dense.linear.weight: copying a param with shape torch.Size([512, 1024, 1]) from checkpoint, the shape in current model is torch.Size([512, 1024]).

    opened by zabir-nabil 3
  • 实验细节的疑问

    实验细节的疑问

    您好: 我想教下您的论文中,实验的实现细节: 1.实验数据:我看很多其他论文都是使用voxceleb2 dev 5994说话人作为训练集(或者voxceleb dev+voxceleb2 dev,1211+5994说话人),您有只在这部分说话人上的实验结果吗?方便透露下嘛?

    2.PLDA和Cosine Similarity:您这里实验比较这两个的EER在TDNN中是提取的是倒数第二层(分类器前一层)还是第三层(xvector)的输出啊?因为我在论文中又看到,这两个不同层embedding对不同方法性能有差异,倒数第二层的cosine方法可能会更好一些。

    Thanks!🙏

    opened by Wenhao-Yang 1
  • questions about model training

    questions about model training

    hello, yuyq96, Thank you so much for the great work you've shared. I learned that D-TDNNSS mini-batch setting 128 from D-TDNN paper. But this model is too large to train on single gpu. Could you tell me how you train it? Using nn.Parallel or DDP? Looking forward to you reply

    opened by forwiat 2
  • the difference between kaldifeat-kaldi and kaldifeat-python?

    the difference between kaldifeat-kaldi and kaldifeat-python?

    May I ask you the numerical difference between kaldifeat by kaldi implementation and kaldifeat by your python implementation? I have compared the two computed features, and I find it has some difference. I wonder that the experiment results showed in D-TDNN master and D-TDNN-kaldifeat branch is absolutely the same.

    Thanks~

    opened by mezhou 4
  • 针对论文的一些疑问

    针对论文的一些疑问

    您好,我觉得您的工作-DTDNN,在参数比较少的情况下获得了较ETDNN,FTDNN更好的结果,我认为这非常有意义。但是我对论文的实验存在两处疑惑: 1、论文中Table5中,基于softmax训练的D-TDNN模型Cosine的结果好于PLDA,在上面的TDNN,ETDNN,FTDNN的结果不一致(均是PLDA好于Cosine),请问这是什么原因导致的? 2、对于null branch,能稍微解释一下吗?

    opened by xuanjihe 10
Releases(trials)
Owner
Ya-Qi Yu
Machine Learning
Ya-Qi Yu
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022