Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Overview

Continual learning datasets

Introduction

This repository contains PyTorch image dataloaders and utility functions to load datasets for supervised continual learning. Currently supported datasets:

  • MNIST
  • Pairwise-MNIST
  • Fashion-MNIST
  • not-MNIST (letters version of MNIST, see EMNIST for more detail)
  • CIFAR-10
  • CIFAR-100
  • German Traffic Signs
  • Street View House Numbers (SVHN)
  • Incremental CIFAR-100
  • Incremental TinyImageNet

Features

The provided interface simplifies typical data loading for supervised continual learning scenarios.

  • Dataset order, additional training data (for replay buffers) and test data (for global metrics computation) can all be specified.

  • A batch balancing feature is also available to make sure data from all available classes are available in a training batch.

  • Training data size and channels can be specified. Transformations will be added to make sure input data always has the same size and number of channels. If a single channel is specified, grayscaling will be applied. Otherwise, if 3 channels are specified, single channels will be triplicated. Bicubic interpolation or linear subsampling will be applied to meet the specified size.

Installation

  1. Clone the repository to your machine.
  2. Install the package:
pip install -e cl_datasets/

Note: Please use Python 3.8 or above.

Example

from cl_datasets import getDatasets

datasets = ['svhn','cifar10','fashion','mnist']
batchSize = 32
dataSize = (32,32)
nChannels = 3

dataloaders = getDatasets(datasets,batchSize,dataSize,nChannels)

for train_test_loaders in dataloaders:
    trainLoader,testLoader = train_test_loaders
    ...

List of possible datasets for training tasks

Full datasets

Description Dataset string
MNIST "mnist" or "MNIST"
not-MNIST "notMnist" or "notMNIST"
Fashion MNIST "fashion"
SVHN "svhn"
Cifar-10 "cifar10"
Cifar-100 "cifar100"
German traffic signs "traffic"

Incremental datasets

Description Dataset string
Pairwise MNIST "mnist_xy" (e.g. "mnist_01")
Incremental Cifar-100 (10 classes per task) "cifar100_i" (e.g. "cifar100_4")
Incremental Tiny ImageNet (10 classes per task) "TIN_i" (e.g. "TIN_3")
Owner
berjaoui
Senior Research Engineer
berjaoui
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022