Pytorch library for fast transformer implementations

Overview

Fast Transformers

Transformers are very successful models that achieve state of the art performance in many natural language tasks. However, it is very difficult to scale them to long sequences due to the quadratic scaling of self-attention.

This library was developed for our research on fast attention for transformers. You can find a list of our papers in the docs as well as related papers and papers that we have implemented.

Quick-start

The following code builds a transformer with softmax attention and one with linear attention and compares the time required by each to encode a sequence with 1000 elements.

import torch
from fast_transformers.builders import TransformerEncoderBuilder

# Create the builder for our transformers
builder = TransformerEncoderBuilder.from_kwargs(
    n_layers=8,
    n_heads=8,
    query_dimensions=64,
    value_dimensions=64,
    feed_forward_dimensions=1024
)

# Build a transformer with softmax attention
builder.attention_type = "full"
softmax_model = builder.get()

# Build a transformer with linear attention
builder.attention_type = "linear"
linear_model = builder.get()

# Construct the dummy input
X = torch.rand(10, 1000, 8*64)

# Prepare everythin for CUDA
X = X.cuda()
softmax_model.cuda()
softmax_model.eval()
linear_model.cuda()
linear_model.eval()

# Warmup the GPU
with torch.no_grad():
    softmax_model(X)
    linear_model(X)
torch.cuda.synchronize()

# Measure the execution time
softmax_start = torch.cuda.Event(enable_timing=True)
softmax_end = torch.cuda.Event(enable_timing=True)
linear_start = torch.cuda.Event(enable_timing=True)
linear_end = torch.cuda.Event(enable_timing=True)

with torch.no_grad():
    softmax_start.record()
    y = softmax_model(X)
    softmax_end.record()
    torch.cuda.synchronize()
    print("Softmax: ", softmax_start.elapsed_time(softmax_end), "ms")
    # Softmax: 144 ms (on a GTX1080Ti)

with torch.no_grad():
    linear_start.record()
    y = linear_model(X)
    linear_end.record()
    torch.cuda.synchronize()
    print("Linear: ", linear_start.elapsed_time(linear_end), "ms")
    # Linear: 68 ms (on a GTX1080Ti)

Dependencies & Installation

The fast transformers library has the following dependencies:

  • PyTorch
  • C++ toolchain
  • CUDA toolchain (if you want to compile for GPUs)

For most machines installation should be as simple as:

pip install --user pytorch-fast-transformers

Note: macOS users should ensure they have llvm and libomp installed. Using the homebrew package manager, this can be accomplished by running brew install llvm libomp.

Documentation

There exists a dedicated documentation site but you are also encouraged to read the source code.

Research

Ours

To read about the theory behind some attention implementations in this library we encourage you to follow our research.

  • Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (2006.16236)
  • Fast Transformers with Clustered Attention (2007.04825)

If you found our research helpful or influential please consider citing

@inproceedings{katharopoulos_et_al_2020,
    author = {Katharopoulos, A. and Vyas, A. and Pappas, N. and Fleuret, F.},
    title = {Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention},
    booktitle = {Proceedings of the International Conference on Machine Learning (ICML)},
    year = {2020}
}

@article{vyas_et_al_2020,
    author={Vyas, A. and Katharopoulos, A. and Fleuret, F.},
    title={Fast Transformers with Clustered Attention},
    booktitle = {Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS)},
    year={2020}
}

By others

  • Efficient Attention: Attention with Linear Complexities (1812.01243)
  • Linformer: Self-Attention with Linear Complexity (2006.04768)
  • Reformer: The Efficient Transformer (2001.04451)

Support, License and Copyright

This software is distributed with the MIT license which pretty much means that you can use it however you want and for whatever reason you want. All the information regarding support, copyright and the license can be found in the LICENSE file in the repository.

Owner
Idiap Research Institute
Idiap Research Institute
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022