TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Related tags

Deep LearningTilinGNN
Overview

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Teaser Figure

About

The goal of our research problem is illustrated below: given a tile set (a) and a 2D region to be filled (b), we aim to produce a tiling (c) that maximally covers the interior of the given region without overlap or hole between the tile instances.

Dependencies:

This project is implemented in Python 3.7. You need to install the following packages to run our program.

  • Pytorch (tested with v1.2.0): compulsory, to manipulate the tensors on GUP, and to build up the networks.
  • Pytorch Geometric (tested with v1.3.2): compulsory, to build up the graph networks.
  • Numpy: compulsory, to manipulate the arrays and their computations.
  • Shapely (tested with v1.6.4): compulsory, for geometric computations such as collision detection.
  • PyQT5: compulsory, for rendering results, and display UI interface.
  • Minizinc: optional, install it only when you use IP solvers

Usage

We provide the following entry points for researchers to try our project:

  • Tiling Design by UI interface: From file Tiling-GUI.py, you can use our interface to draw a tiling region and preview the tiling results interactively.
  • Tiling a region of silhouette image: From file Tiling-Shape.py, you can use our pre-trained models, or IP solver, to solve a tiling problem by specifying a tiling region (from silhouette image) and a tile set.
  • Training for new tile Sets: You need the following steps to train a network for a new tile set.
    1. Following the file organization of existing tile sets inside the data folder, create a new folder with new files that describe your new tile sets. After that, you need to edit the global configuration file inputs/config.py to let the system know you your new tile set.
    2. Create a superset of candidate tile placements by running file tiling/gen_complete_super_graph.py, the generated files will be stored in the folder you created in Step (1).
    3. Generate training data of random shapes by running solver/ml_solver/gen_data.py, the data will be stored in the path recorded in file inputs/config.py.
    4. Start network training by running file solver/ml_solver/network_train.py.

Note

In this program, we have a global configuration file inputs/config.py, which plays a very important role to control the behavior of the programs, such as which tile set you want to work with, the stored location of the trained networks, or how many training data you will create, etc.

Keep Improving

If you met problems or any question on this project, contact us at [[email protected]] or [[email protected]]

Owner
PhD, The Chinese University of Hong Kong.
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022