Active learning for Mask R-CNN in Detectron2

Related tags

Deep Learningmaskal
Overview

MaskAL - Active learning for Mask R-CNN in Detectron2

maskAL_framework

Summary

MaskAL is an active learning framework that automatically selects the most-informative images for training Mask R-CNN. By using MaskAL, it is possible to reduce the number of image annotations, without negatively affecting the performance of Mask R-CNN. Generally speaking, MaskAL involves the following steps:

  1. Train Mask R-CNN on a small initial subset of a bigger dataset
  2. Use the trained Mask R-CNN algorithm to make predictions on the unlabelled images of the remaining dataset
  3. Select the most-informative images with a sampling algorithm
  4. Annotate the most-informative images, and then retrain Mask R-CNN on the most informative-images
  5. Repeat step 2-4 for a specified number of sampling iterations

The figure below shows the performance improvement of MaskAL on our dataset. By using MaskAL, the performance of Mask R-CNN improved more quickly and therefore 1400 annotations could be saved (see the black dashed line):

maskAL_graph

Installation

See INSTALL.md

Data preparation and training

Split the dataset in a training set, validation set and a test set. It is not required to annotate every image in the training set, because MaskAL will select the most-informative images automatically.

  1. From the training set, a smaller initial dataset is randomly sampled (the dataset size can be specified in the maskAL.yaml file). The images that do not have an annotation are placed in the annotate subfolder inside the image folder. You first need to annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format). Refer to our annotation procedure: ANNOTATION.md
  2. Step 1 is repeated for the validation set and the test set (the file locations can be specified in the maskAL.yaml file).
  3. After the first training iteration of Mask R-CNN, the sampling algorithm selects the most-informative images (its size can be specified in the maskAL.yaml file).
  4. The most-informative images that don't have an annotation, are placed in the annotate subfolder. Annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format).
  5. OPTIONAL: it is possible to use the trained Mask R-CNN model to auto-annotate the unlabelled images to further reduce annotation time. Activate auto_annotate in the maskAL.yaml file, and specify the export_format (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely').
  6. Step 3-5 are repeated for several training iterations. The number of iterations (loops) can be specified in the maskAL.yaml file.

Please note that MaskAL does not work with the default COCO json-files of detectron2. These json-files contain all annotations that are completed before the training starts. Because MaskAL involves an iterative train and annotation procedure, the default COCO json-files lack the desired format.

How to use MaskAL

Open a terminal (Ctrl+Alt+T):

(base) [email protected]:~$ cd maskal
(base) [email protected]:~/maskal$ conda activate maskAL
(maskAL) [email protected]:~/maskal$ python maskAL.py --config maskAL.yaml

Change the following settings in the maskAL.yaml file:
Setting Description
weightsroot The file directory where the weight-files are stored
resultsroot The file directory where the result-files are stored
dataroot The root directory where all image-files are stored
use_initial_train_dir Set this to True when you want to start the active-learning from an initial training dataset. When False, the initial dataset of size initial_datasize is randomly sampled from the traindir
initial_train_dir When use_initial_train_dir is activated: the file directory where the initial training images and annotations are stored
traindir The file directory where the training images and annotations are stored
valdir The file directory where the validation images and annotations are stored
testdir The file directory where the test images and annotations are stored
network_config The Mask R-CNN configuration-file (.yaml) file (see the folder './configs')
pretrained_weights The pretrained weights to start the active-learning. Either specify the network_config (.yaml) or a custom weights-file (.pth or .pkl)
cuda_visible_devices The identifiers of the CUDA device(s) you want to use for training and sampling (in string format, for example: '0,1')
classes The names of the classes in the image annotations
learning_rate The learning-rate to train Mask R-CNN (default value: 0.01)
confidence_threshold Confidence-threshold for the image analysis with Mask R-CNN (default value: 0.5)
nms_threshold Non-maximum suppression threshold for the image analysis with Mask R-CNN (default value: 0.3)
initial_datasize The size of the initial dataset to start the active learning (when use_initial_train_dir is False)
pool_size The number of most-informative images that are selected from the traindir
loops The number of sampling iterations
auto_annotate Set this to True when you want to auto-annotate the unlabelled images
export_format When auto_annotate is activated: specify the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
supervisely_meta_json When supervisely auto_annotate is activated: specify the file location of the meta.json for supervisely export

Description of the other settings in the maskAL.yaml file: MISC_SETTINGS.md

Please refer to the folder active_learning/config for more setting-files.

Other software scripts

Use a trained Mask R-CNN algorithm to auto-annotate unlabelled images: auto_annotate.py

Argument Description
--img_dir The file directory where the unlabelled images are stored
--network_config Configuration of the backbone of the network
--classes The names of the classes of the annotated instances
--conf_thres Confidence threshold of the CNN to do the image analysis
--nms_thres Non-maximum suppression threshold of the CNN to do the image analysis
--weights_file Weight-file (.pth) of the trained CNN
--export_format Specifiy the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
--supervisely_meta_json The file location of the meta.json for supervisely export

Example syntax (auto_annotate.py):

python auto_annotate.py --img_dir datasets/train --network_config COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml --classes healthy damaged matured cateye headrot --conf_thres 0.5 --nms_thres 0.2 --weights_file weights/broccoli/model_final.pth --export_format supervisely --supervisely_meta_json datasets/meta.json

Troubleshooting

See TROUBLESHOOTING.md

Citation

See our research article for more information or cross-referencing:

@misc{blok2021active,
      title={Active learning with MaskAL reduces annotation effort for training Mask R-CNN}, 
      author={Pieter M. Blok and Gert Kootstra and Hakim Elchaoui Elghor and Boubacar Diallo and Frits K. van Evert and Eldert J. van Henten},
      year={2021},
      eprint={2112.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url = {https://arxiv.org/abs/2112.06586},
}

License

Our software was forked from Detectron2 (https://github.com/facebookresearch/detectron2). As such, the software will be released under the Apache 2.0 license.

Acknowledgements

The uncertainty calculation methods were inspired by the research of Doug Morrison:
https://nikosuenderhauf.github.io/roboticvisionchallenges/assets/papers/CVPR19/rvc_4.pdf

Two software methods were inspired by the work of RovelMan:
https://github.com/RovelMan/active-learning-framework

MaskAL uses the Bayesian Active Learning (BaaL) software:
https://github.com/ElementAI/baal

Contact

MaskAL is developed and maintained by Pieter Blok.

A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022