State of the Art Neural Networks for Generative Deep Learning

Overview

pyradox-generative

State of the Art Neural Networks for Generative Deep Learning

Downloads Downloads Downloads


Table of Contents


Installation

pip install pyradox-generative

Usage

This library provides light weight trainers for the following generative models:

Vanilla GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import GAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = GAN(discriminator=discriminator, generator=generator, latent_dim=28)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Conditional GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation and calculate the input and output dimensions of generator and discriminator:

from pyradox_generative import ConditionalGAN
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

CODINGS_SIZE = 28
N_CHANNELS = 1
N_CLASSES = 10
G_INP_CHANNELS = CODINGS_SIZE + N_CLASSES
D_INP_CHANNELS = N_CHANNELS + N_CLASSES

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0
y_train = y_train
y_train = keras.utils.to_categorical(y_train, 10)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[G_INP_CHANNELS]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, D_INP_CHANNELS],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = ConditionalGAN(
    discriminator=discriminator, generator=generator, latent_dim=CODINGS_SIZE
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

history = gan.fit(dataset)

Wasserstein GAN

Just provide your genrator and discriminator and train your GAN

Data Preparation:

from pyradox_generative import WGANGP
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the generator and discriminator models:

generator = keras.models.Sequential(
    [
        keras.Input(shape=[28]),
        keras.layers.Dense(7 * 7 * 3),
        keras.layers.Reshape([7, 7, 3]),
        keras.layers.BatchNormalization(),
        keras.layers.Conv2DTranspose(
            32, kernel_size=3, strides=2, padding="same", activation="selu"
        ),
        keras.layers.Conv2DTranspose(
            1, kernel_size=3, strides=2, padding="same", activation="tanh"
        ),
    ],
    name="generator",
)

discriminator = keras.models.Sequential(
    [
        keras.layers.Conv2D(
            32,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
            input_shape=[28, 28, 1],
        ),
        keras.layers.Conv2D(
            3,
            kernel_size=3,
            strides=2,
            padding="same",
            activation=keras.layers.LeakyReLU(0.2),
        ),
        keras.layers.Flatten(),
        keras.layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = WGANGP(
    discriminator=discriminator,
    generator=generator,
    latent_dim=28,
    discriminator_extra_steps=1,
    gp_weight=10,
)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
)

history = gan.fit(dataset)

Variational Auto Encoder

Just provide your encoder and decoder and train your VAE Sampling is done internally

Data Preparation:

from pyradox_generative import VAE
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras

(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = x_train.astype(np.float32) / 255
x_train = x_train.reshape(-1, 28, 28, 1) * 2.0 - 1.0

dataset = tf.data.Dataset.from_tensor_slices(x_train)
dataset = dataset.shuffle(1024)
dataset = dataset.batch(32, drop_remainder=True).prefetch(1)

Define the encoder and decoder models:

encoder = keras.models.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        keras.layers.Conv2D(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2D(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Flatten(),
        keras.layers.Dense(16, activation="relu"),
    ],
    name="encoder",
)

decoder = keras.models.Sequential(
    [
        keras.Input(shape=(28,)),
        keras.layers.Dense(7 * 7 * 64, activation="relu"),
        keras.layers.Reshape((7, 7, 64)),
        keras.layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same"),
        keras.layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same"),
    ],
    name="decoder",
)

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

vae = VAE(encoder=encoder, decoder=decoder, latent_dim=28)
vae.compile(keras.optimizers.Adam(learning_rate=0.001))
history = vae.fit(dataset)

Style GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

from pyradox_generative import StyleGAN
import numpy as np
import tensorflow as tf
from functools import partial

def resize_image(res, image):
    # only donwsampling, so use nearest neighbor that is faster to run
    image = tf.image.resize(
        image, (res, res), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR
    )
    image = tf.cast(image, tf.float32) / 127.5 - 1.0
    return image


def create_dataloader(res):
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    x_train = x_train[:100, :, :]
    x_train = np.pad(x_train, [(0, 0), (2, 2), (2, 2)], mode="constant")
    x_train = tf.image.grayscale_to_rgb(tf.expand_dims(x_train, axis=3), name=None)
    x_train = tf.data.Dataset.from_tensor_slices(x_train)

    batch_size = 32
    dl = x_train.map(partial(resize_image, res), num_parallel_calls=tf.data.AUTOTUNE)
    dl = dl.shuffle(200).batch(batch_size, drop_remainder=True).prefetch(1).repeat()
    return dl

Define the model by providing number of filters for each each resolution (log 2):

gan = StyleGAN(
    target_res=32,
    start_res=4,
    filter_nums={0: 32, 1: 32, 2: 32, 3: 32, 4: 32, 5: 32},
)
opt_cfg = {"learning_rate": 1e-3, "beta_1": 0.0, "beta_2": 0.99, "epsilon": 1e-8}

start_res_log2 = 2
target_res_log2 = 5

Train the Style GAN:

for res_log2 in range(start_res_log2, target_res_log2 + 1):
    res = 2 ** res_log2
    for phase in ["TRANSITION", "STABLE"]:
        if res == 4 and phase == "TRANSITION":
            continue

        train_dl = create_dataloader(res)

        steps = 10

        gan.compile(
            d_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            g_optimizer=tf.keras.optimizers.Adam(**opt_cfg),
            loss_weights={"gradient_penalty": 10, "drift": 0.001},
            steps_per_epoch=steps,
            res=res,
            phase=phase,
            run_eagerly=False,
        )

        print(phase)
        history = gan.fit(train_dl, epochs=1, steps_per_epoch=steps)

Cycle GAN

Just provide your genrator and discriminator models and train your GAN

Data Preparation:

import tensorflow_datasets as tfds
import tensorflow as tf
from tensorflow import keras
from pyradox_generative import CycleGAN

tfds.disable_progress_bar()
autotune = tf.data.AUTOTUNE
orig_img_size = (286, 286)
input_img_size = (256, 256, 3)


def normalize_img(img):
    img = tf.cast(img, dtype=tf.float32)
    return (img / 127.5) - 1.0


def preprocess_train_image(img, label):
    img = tf.image.random_flip_left_right(img)
    img = tf.image.resize(img, [*orig_img_size])
    img = tf.image.random_crop(img, size=[*input_img_size])
    img = normalize_img(img)
    return img


def preprocess_test_image(img, label):
    img = tf.image.resize(img, [input_img_size[0], input_img_size[1]])
    img = normalize_img(img)
    return img

train_horses, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainA[:5%]"
)
train_zebras, _ = tfds.load(
    "cycle_gan/horse2zebra", with_info=True, as_supervised=True, split="trainB[:5%]"
)

buffer_size = 256
batch_size = 1

train_horses = (
    train_horses.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)
train_zebras = (
    train_zebras.map(preprocess_train_image, num_parallel_calls=autotune)
    .cache()
    .shuffle(buffer_size)
    .batch(batch_size)
)

Define the generator and discriminator models:

def build_generator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.Conv2D(3, 3, activation="tanh", padding="same"),
        ],
        name=name,
    )


def build_discriminator(name):
    return keras.models.Sequential(
        [
            keras.layers.Input(shape=input_img_size),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(32, 3, activation="relu", padding="same"),
            keras.layers.MaxPooling2D(pool_size=2, strides=2),
            keras.layers.Conv2D(1, 3, activation="relu", padding="same"),
        ],
        name=name,
    )

Plug in the models to the trainer class and train them using the very familiar compile and fit methods:

gan = CycleGAN(
    generator_g=build_generator("gen_G"),
    generator_f=build_generator("gen_F"),
    discriminator_x=build_discriminator("disc_X"),
    discriminator_y=build_discriminator("disc_Y"),
)

gan.compile(
    gen_g_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    gen_f_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_x_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
    disc_y_optimizer=keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5),
)

history = gan.fit(
    tf.data.Dataset.zip((train_horses, train_zebras)),
)

References

Owner
Ritvik Rastogi
I have been writing code since 2016, and taught myself a handful of skills and programming languages. I love solving problems by writing code
Ritvik Rastogi
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022