[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Overview

Amplitude-Phase Recombination (ICCV'21)

Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain", Guangyao Chen, Peixi Peng, Li Ma, Jia Li, Lin Du, and Yonghong Tian.

Paper: https://arxiv.org/abs/2108.08487

Abstract: Recently, the generalization behavior of Convolutional Neural Networks (CNN) is gradually transparent through explanation techniques with the frequency components decomposition. However, the importance of the phase spectrum of the image for a robust vision system is still ignored. In this paper, we notice that the CNN tends to converge at the local optimum which is closely related to the high-frequency components of the training images, while the amplitude spectrum is easily disturbed such as noises or common corruptions. In contrast, more empirical studies found that humans rely on more phase components to achieve robust recognition. This observation leads to more explanations of the CNN's generalization behaviors in both adversarial attack and out-of-distribution detection, and motivates a new perspective on data augmentation designed by re-combing the phase spectrum of the current image and the amplitude spectrum of the distracter image. That is, the generated samples force the CNN to pay more attention on the structured information from phase components and keep robust to the variation of the amplitude. Experiments on several image datasets indicate that the proposed method achieves state-of-the-art performances on multiple generalizations and calibration tasks, including adaptability for common corruptions and surface variations, out-of-distribution detection and adversarial attack.

Highlights

Fig. 1: More empirical studies found that humans rely on more phase components to achieve robust recognition. However, CNN without effective training restrictions tends to converge at the local optimum related to the amplitude spectrum of the image, leading to generalization behaviors counter-intuitive to humans (the sensitive to various corruptions and the overconfidence of OOD). main hypothesis of the paper

Examples of the importance of phase spectrum to explain the counter-intuitive behavior of CNN

Fig. 2: Four pairs of testing sampless selected from in-distribution CIFAR-10 and OOD SVHN that help explain that CNN capture more amplitude specturm than phase specturm for classification: First, in (a) and (b), the model correctly predicts the original image (1st column in each panel), but the predicts are also exchanged after switching amplitude specturm (3rd column in each panel) while the human eye can still give the correct category through the contour information. Secondly, the model is overconfidence for the OOD samples in (c) and (d). Similarly, after the exchange of amplitude specturm, the label with high confidence is also exchanged.

Fig. 3: Two ways of the proposed Amplitude-Phase Recombination: APR-P and APR-S. Motivated by the powerful generalizability of the human, we argue that reducing the dependence on the amplitude spectrum and enhancing the ability to capture phase spectrum can improve the robustness of CNN.

Citation

If you find our work, this repository and pretrained adversarial generators useful. Please consider giving a star and citation.

@inproceedings{chen2021amplitude,
    title={Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain},
    author={Chen, Guangyao and Peng, Peixi and Ma, Li and Li, Jia and Du, Lin and Tian, Yonghong},
    booktitle={Proceedings of the IEEE International Conference on Computer Vision},
    year={2021}
}

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.7.1+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For even quicker experimentation, there is CIFAR-10-C and CIFAR-100-C. please download these datasets to ./data/CIFAR-10-C and ./data/CIFAR-100-C.

2. Training & Evaluation

To train the models in paper, run this command:

python main.py --aug <augmentations>

Option --aug can be one of None/APR-S. The default training method is APR-P. To evaluate the model, add --eval after this command.

APRecombination for APR-S and mix_data for APR-P can plug and play in other training codes.

3. Results

Fourier Analysis

The standard trained model is highly sensitive to additive noise in all but the lowest frequencies. APR-SP could substantially improve robustness to most frequency perturbations. The code of Heat maps is developed upon the following project FourierHeatmap.

ImageNet-C

  • Results of ResNet-50 models on ImageNet-C:
+(APR-P) +(APR-S) +(APR-SP) +DeepAugMent+(ARP-SP)
mCE 70.5 69.3 65.0 57.5
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
TianyuQi 10 Dec 11, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022