SMPL-X: A new joint 3D model of the human body, face and hands together

Related tags

Deep Learningsmplx
Overview

SMPL-X: A new joint 3D model of the human body, face and hands together

[Paper Page] [Paper] [Supp. Mat.]

SMPL-X Examples

Table of Contents

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the "Model & Software"), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Disclaimer

The original images used for the figures 1 and 2 of the paper can be found in this link. The images in the paper are used under license from gettyimages.com. We have acquired the right to use them in the publication, but redistribution is not allowed. Please follow the instructions on the given link to acquire right of usage. Our results are obtained on the 483 × 724 pixels resolution of the original images.

Description

SMPL-X (SMPL eXpressive) is a unified body model with shape parameters trained jointly for the face, hands and body. SMPL-X uses standard vertex based linear blend skinning with learned corrective blend shapes, has N = 10, 475 vertices and K = 54 joints, which include joints for the neck, jaw, eyeballs and fingers. SMPL-X is defined by a function M(θ, β, ψ), where θ is the pose parameters, β the shape parameters and ψ the facial expression parameters.

News

  • 3 November 2020: We release the code to transfer between the models in the SMPL family. For more details on the code, go to this readme file. A detailed explanation on how the mappings were extracted can be found here.
  • 23 September 2020: A UV map is now available for SMPL-X, please check the Downloads section of the website.
  • 20 August 2020: The full shape and expression space of SMPL-X are now available.

Installation

To install the model please follow the next steps in the specified order:

  1. To install from PyPi simply run:
pip install smplx[all]
  1. Clone this repository and install it using the setup.py script:
git clone https://github.com/vchoutas/smplx
python setup.py install

Downloading the model

To download the SMPL-X model go to this project website and register to get access to the downloads section.

To download the SMPL+H model go to this project website and register to get access to the downloads section.

To download the SMPL model go to this (male and female models) and this (gender neutral model) project website and register to get access to the downloads section.

Loading SMPL-X, SMPL+H and SMPL

SMPL and SMPL+H setup

The loader gives the option to use any of the SMPL-X, SMPL+H, SMPL, and MANO models. Depending on the model you want to use, please follow the respective download instructions. To switch between MANO, SMPL, SMPL+H and SMPL-X just change the model_path or model_type parameters. For more details please check the docs of the model classes. Before using SMPL and SMPL+H you should follow the instructions in tools/README.md to remove the Chumpy objects from both model pkls, as well as merge the MANO parameters with SMPL+H.

Model loading

You can either use the create function from body_models or directly call the constructor for the SMPL, SMPL+H and SMPL-X model. The path to the model can either be the path to the file with the parameters or a directory with the following structure:

models
├── smpl
│   ├── SMPL_FEMALE.pkl
│   └── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
├── mano
|   ├── MANO_RIGHT.pkl
|   └── MANO_LEFT.pkl
└── smplx
    ├── SMPLX_FEMALE.npz
    ├── SMPLX_FEMALE.pkl
    ├── SMPLX_MALE.npz
    ├── SMPLX_MALE.pkl
    ├── SMPLX_NEUTRAL.npz
    └── SMPLX_NEUTRAL.pkl

MANO and FLAME correspondences

The vertex correspondences between SMPL-X and MANO, FLAME can be downloaded from the project website. If you have extracted the correspondence data in the folder correspondences, then use the following scripts to visualize them:

  1. To view MANO correspondences run the following command:
python examples/vis_mano_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/MANO_SMPLX_vertex_ids.pkl
  1. To view FLAME correspondences run the following command:
python examples/vis_flame_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/SMPL-X__FLAME_vertex_ids.npy

Example

After installing the smplx package and downloading the model parameters you should be able to run the demo.py script to visualize the results. For this step you have to install the pyrender and trimesh packages.

python examples/demo.py --model-folder $SMPLX_FOLDER --plot-joints=True --gender="neutral"

SMPL-X Examples

Modifying the global pose of the model

If you want to modify the global pose of the model, i.e. the root rotation and translation, to a new coordinate system for example, you need to take into account that the model rotation uses the pelvis as the center of rotation. A more detailed description can be found in the following link. If something is not clear, please let me know so that I can update the description.

Citation

Depending on which model is loaded for your project, i.e. SMPL-X or SMPL+H or SMPL, please cite the most relevant work below, listed in the same order:

@inproceedings{SMPL-X:2019,
    title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
    author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2019}
}
@article{MANO:SIGGRAPHASIA:2017,
    title = {Embodied Hands: Modeling and Capturing Hands and Bodies Together},
    author = {Romero, Javier and Tzionas, Dimitrios and Black, Michael J.},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    volume = {36},
    number = {6},
    series = {245:1--245:17},
    month = nov,
    year = {2017},
    month_numeric = {11}
  }
@article{SMPL:2015,
    author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
    title = {{SMPL}: A Skinned Multi-Person Linear Model},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    month = oct,
    number = {6},
    pages = {248:1--248:16},
    publisher = {ACM},
    volume = {34},
    year = {2015}
}

This repository was originally developed for SMPL-X / SMPLify-X (CVPR 2019), you might be interested in having a look: https://smpl-x.is.tue.mpg.de.

Acknowledgments

Facial Contour

Special thanks to Soubhik Sanyal for sharing the Tensorflow code used for the facial landmarks.

Contact

The code of this repository was implemented by Vassilis Choutas.

For questions, please contact [email protected].

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Vassilis Choutas
Ph.D. Student, Perceiving Systems, Max Planck ETH Center for Learning Systems
Vassilis Choutas
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022