Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Overview

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. Advances in Neural Information Processing Systems 33 (2020).

[Paper] [Poster] [Slides]

Requirements

Basic Requirements

  • Python >= 3.7 (tested on 3.8)

  • signac: this package utilizes signac to manage experiment data and jobs. signac can be installed with the following command:

    pip install signac==1.1 signac-flow==0.7.1 signac-dashboard

    Note that the latest version of signac may cause incompatibility.

  • numpy (tested on 1.18.5)

  • scipy (tested on 1.5.0)

  • networkx >= 2.4 (tested on 2.4)

  • scikit-learn (tested on 0.23.2)

For H2GCN

  • TensorFlow >= 2.0 (tested on 2.2)

Note that it is possible to use H2GCN without signac and scikit-learn on your own data and experimental framework.

For baselines

We also include the code for the baseline methods in the repository. These code are mostly the same as the reference implementations provided by the authors, with our modifications to add JK-connections, interoperability with our experimental pipeline, etc. For the requirements to run these baselines, please refer to the instructions provided by the original authors of the corresponding code, which could be found in each folder under /baselines.

As a general note, TensorFlow 1.15 can be used for all code requiring TensorFlow 1.x; for PyTorch, it is usually fine to use PyTorch 1.6; all code should be able to run under Python >= 3.7. In addition, the basic requirements must also be met.

Usage

Download Datasets

The datasets can be downloaded using the bash scripts provided in /experiments/h2gcn/scripts, which also prepare the datasets for use in our experimental framework based on signac.

We make use of signac to index and manage the datasets: the datasets and experiments are stored in hierarchically organized signac jobs, with the 1st level storing different graphs, 2nd level storing different sets of features, and 3rd level storing different training-validation-test splits. Each level contains its own state points and job documents to differentiate with other jobs.

Use signac schema to list all available properties in graph state points; use signac find to filter graphs using properties in the state points:

cd experiments/h2gcn/

# List available properties in graph state points
signac schema

# Find graphs in syn-products with homophily level h=0.1
signac find numNode 10000 h 0.1

# Find real benchmark "Cora"
signac find benchmark true datasetName\.\$regex "cora"

/experiments/h2gcn/utils/signac_tools.py provides helpful functions to iterate through the data space in Python; more usages of signac can be found in these documents.

Replicate Experiments with signac

  • To replicate our experiments of each model on specific datasets, use Python scripts in /experiments/h2gcn, and the corresponding JSON config files in /experiments/h2gcn/configs. For example, to run H2GCN on our synthetic benchmarks syn-cora:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json [-i] run [-p PARALLEL_NUM]
    • Files and results generated in experiments are also stored with signac on top of the hierarchical order introduced above: the 4th level separates different models, and the 5th level stores files and results generated in different runs with different parameters of the same model.

    • By default, stdout and stderr of each model are stored in terminal_output.log in the 4th level; use -i if you want to see them through your terminal.

    • Use -p if you want to run experiments in parallel on multiple graphs (1st level).

    • Baseline models can be run through the following scripts:

      • GCN, GCN-Cheby, GCN+JK and GCN-Cheby+JK: run_gcn_experiments.py
      • GraphSAGE, GraphSAGE+JK: run_graphsage_experiments.py
      • MixHop: run_mixhop_experiments.py
      • GAT: run_gat_experiments.py
      • MLP: run_hgcn_experiments.py
  • To summarize experiment results of each model on specific datasets to a CSV file, use Python script /experiments/h2gcn/run_experiments_summarization.py with the corresponding model name and config file. For example, to summarize H2GCN results on our synthetic benchmark syn-cora:

    cd experiments/h2gcn/
    python run_experiments_summarization.py h2gcn -f configs/syn-cora/h2gcn.json
  • To list all paths of the 3rd level datasets splits used in a experiment (in planetoid format) without running experiments, use the following command:

    cd experiments/h2gcn/
    python run_hgcn_experiments.py -c configs/syn-cora/h2gcn.json --check_paths run

Standalone H2GCN Package

Our implementation of H2GCN is stored in the h2gcn folder, which can be used as a standalone package on your own data and experimental framework.

Example usages:

  • H2GCN-2

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • H2GCN-1

    cd h2gcn
    python run_experiments.py H2GCN planetoid \
      --network_setup M64-R-T1-G-V-C1-D0.5-MO \
      --dataset ind.citeseer \
      --dataset_path ../baselines/gcn/gcn/data/
  • Use --help for more advanced usages:

    python run_experiments.py H2GCN planetoid --help

We only support datasets stored in planetoid format. You could also add support to different data formats and models beyond H2GCN by adding your own modules to /h2gcn/datasets and /h2gcn/models, respectively; check out ou code for more details.

Contact

Please contact Jiong Zhu ([email protected]) in case you have any questions.

Citation

Please cite our paper if you make use of this code in your own work:

@article{zhu2020beyond,
  title={Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs},
  author={Zhu, Jiong and Yan, Yujun and Zhao, Lingxiao and Heimann, Mark and Akoglu, Leman and Koutra, Danai},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
Code repository for work by the GEMS Lab: https://gemslab.github.io/research/
GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022