Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Overview

Suture detection PyTorch

This repo contains the reference implementation of suture detection model in PyTorch for the paper

Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Lalith Sharan, Gabriele Romano, Julian Brand, Halvar Kelm, Matthias Karck, Raffaele De Simone, Sandy Engelhardt

Accepted, IJCARS 2021

Please see the license file for terms os use of this repo. If you find our work useful in your research please consider citing our paper:

Sharan, L., Romano, G., Brand, J. et al. Point detection through multi-instance deep heatmap regression for 
sutures in endoscopy. Int J CARS (2021). https://doi.org/10.1007/s11548-021-02523-w

Setup

A conda environment is recommended for setting up an environment for model training and prediction. There are two ways this environment can be set up:

  1. Cloning conda environment (recommended)
conda env create -f suture_detection_pytorch.yml
conda activate suture_detection_pytorch

If the installation from .yml file does not work, it may be a cuda error. The solution is to either install the failed packages via pip, or use the pip requirements file here.

  1. Installing requirements
conda intall --file conda_requirements.txt
conda install -c pytorch torchvision=0.7.0
pip install --r requirements.txt

Prediction of suture detection for a single image

You can predict the suture points for a single image with:

python test.py --dataroot ~/data/mkr_dataset/ --exp_dir ~/experiments/unet_baseline_fold_1/ --save_pred_points
  • The command save_pred_points saves the predicted landmark co-ordinates in the resepective op folders in the ../predictions directory.
  • The command save_pred_mask saves the predicted mask that is the output of the model in the resepective op folders in the ../predictions directory. The final points are extracted from this mask.

Dataset preparation

You can download the challenge dataset from the synapse platform by signing up for the AdaptOR 2021 Challenge from the Synapse platform.

  • The Challenge data is present in this format: dataroot --> op_date --> video_folders --> images, point_labels
  • Generate the masks with a blur function and spread by running the following script:
python generate_suture_masks.py --dataroot /path/to/data --blur_func gaussian --spread 2
  • Generate the split files for the generated masks, for cross-validation by running the following script: You can predict depth for a single image with:
python generate_splits.py --splits_name mkr_dataset --num_folds 4

Training a model

Once you have prepared the dataset, you can train the model with:

python train.py --dataroot /path/to/data
Owner
artificial intelligence in the area of cardiovascular healthcare
artificial intelligence in the area of cardiovascular healthcare
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022