DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

Overview

DockStream

alt text

Description

DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution and post hoc analysis can be automated via the benchmarking and analysis workflow. The flexilibity to specifiy a large variety of docking configurations allows tailored protocols for diverse end applications. DockStream can also parallelize docking across CPU cores, increasing throughput. DockStream is integrated with the de novo design platform, REINVENT, allowing one to incorporate docking into the generative process, thus providing the agent with 3D structural information.

Supported Backends

Ligand Embedders

Docking Backends

Note: The CCDC package, the OpenEye toolkit and Schrodinger's tools require you to obtain the respective software from those vendors.

Tutorials and Usage

Detailed Jupyter Notebook tutorials for all DockStream functionalities and workflows are provided in DockStreamCommunity. The DockStream repository here contains input JSON templates located in examples. The templates are organized as follows:

  • target_preparation: Preparing targets for docking
  • ligand_preparation: Generating 3D coordinates for ligands
  • docking: Docking ligands
  • integration: Combining different ligand embedders and docking backends into a single input JSON to run successively

Requirements

Two Conda environments are provided: DockStream via environment.yml and DockStreamFull via environment_full.yml. DockStream suffices for all use cases except when CCDC GOLD software is used, in which case DockStreamFull is required.

git clone <DockStream repository>
cd <DockStream directory>
conda env create -f environment.yml
conda activate DockStream

Enable use of OpenEye software (from REINVENT README)

You will need to set the environmental variable OE_LICENSE to activate the oechem license. One way to do this and keep it conda environment specific is: On the command-line, first:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

Then edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh
export OE_LICENSE='/opt/scp/software/oelicense/1.0/oe_license.seq1'

and finally, edit ./etc/conda/deactivate.d/env_vars.sh :

#!/bin/sh
unset OE_LICENSE

Unit Tests

After cloning the DockStream repository, enable licenses, if applicable (OpenEye, CCDC, Schrodinger). Then execute the following:

python unit_tests.py

Contributors

Christian Margreitter ([email protected]) Jeff Guo ([email protected]) Alexey Voronov ([email protected])

Comments
  • Glide dockings using local machine

    Glide dockings using local machine

    Hi, I am trying to play with DockStream using Schrodinger. I am wondering if there is the possibility to use it in the local machine specifying $SCHRODINGER/glide instead of the tokens procedure.

    opened by Oulfin 6
  • Bug in Glide backend parallelization

    Bug in Glide backend parallelization

    First, thanks for contributing this nice toolbox.

    This is to report a bug in the following module:

    https://github.com/MolecularAI/DockStream/blob/7bdfd4a67f5c938e3222db59387e5a95e8a59e56/dockstream/core/Schrodinger/Glide_docker.py#L404

    while loop is used to process all sublists in batches. However, the number of processed sublists as recorded in jobs_submitted could be off because this variable is the cumulative sum of len(tmp_output_dirs), which could be smaller than len(cur_slice_sublists) if any of the sublists has no valid molecules to write out.

    The bug may cause some of the sublists get processed repeatedly, and in extreme cases may result in an infinite loop.

    I didn't check if any other backend uses similar logic to parallelize the run and may suffer from the same problem.

    opened by hshany 3
  • Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    Question: Is it possible to feed an sdf file of prepared ligands straight into docking?

    I'm trying to work out whether it's possible to put an sdf file of prepared ligands straight into a Glide run? i.e. not specifying an input_pool to the docking_runs list? (especially when using docker.py)

    opened by reskyner 2
  • Raise LigandPreparationFailed error

    Raise LigandPreparationFailed error

    For OpenEye Hybrid, it reported LigandPreparationFailed errors for both CORINA and OMEGA backend. One example is shown below: `File "/DockStream/dockstream/core/OpenEyeHybrid/Omega_ligand_preparator.py", line 66, in init raise LigandPreparationFailed("Cannot initialize OMEGA backend - abort.") dockstream.utils.dockstream_exceptions.LigandPreparationFailed: Cannot initialize OMEGA backend - abort.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/DockStream/docker.py", line 132, in raise LigandPreparationFailed dockstream.utils.dockstream_exceptions.LigandPreparationFailed`

    Could you please help me with this problem? I tried both the provided receptor-ligand data files from DockStreamCommunity and my own dataset. Both reported same LigandPreparation error. Thank you in advance!

    opened by fangffRS 1
  • ADV 1.2.0 support

    ADV 1.2.0 support

    For DockStream to work with the new AutoDock-Vina 1.2.0 (https://pubs.acs.org/doi/10.1021/acs.jcim.1c00203), the "log-file" specification has to go:

    https://github.com/MolecularAI/DockStream/blob/efefbe52d3cecb8b6d1b72ab719aad1e4702833b/dockstream/core/AutodockVina/AutodockVina_docker.py#L275

    Should be backwards-compatible.

    opened by CMargreitter 1
  • Input file of the function

    Input file of the function "parse_maestro"

    First of all, thank you for your wonderful work in drug development area using AI. I am using Glide to get the result through DockStream. I think the the function parse_maestro in Glide_docker.py can be used to extract setting for docking(In DockStream, this setting is written json file). Is this right? If so, could you tell me the input file type for the parse_mastro?! (eg. maegz, mae, sdf, etc.) I tried the function with maegz (output from Glide docking), but I couldn't get the result. I want to use parse_maestro function to reproduce the setting which applied to previous docking simulation. I would be very grateful if you could give the answer to me. Thanks!

    opened by SejeongPark8354 0
  • Openbabel integration failed

    Openbabel integration failed

    I am trying to implement Dockstream with the vina backend, an exception is raised with openBabel executable.

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 130, in prep = AutodockVinaTargetPreparator(conf=config, target=input_pdb_path, run_number=run_number) File "C:\Users\Y-8874903-E.ESTUDIANT\OneDrive - URV\Escritorio\PLIP interaction\DockStream\dockstream\core\AutodockVina\AutodockVina_target_preparator.py", line 56, in init raise TargetPreparationFailed("Cannot initialize OpenBabel external library, which should be part of the environment - abort.") dockstream.utils.dockstream_exceptions.TargetPreparationFailed: Cannot initialize OpenBabel external library, which should be part of the environment - abort.

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last): File "DockStream/target_preparator.py", line 139, in raise TargetPreparationFailed() from e dockstream.utils.dockstream_exceptions.TargetPreparationFailed

    Follow all necessary steps mentioned in docs.

    opened by Crispae 1
  • Parallelization of ADV for docking

    Parallelization of ADV for docking

    Hello,

    I am trying to run first docking experiments together with reinvent. I am observing many ADV jobs getting started with -cpu 1 (hardcoded), but a few (1 or 2) take quite long and leave all other CPUs idle until the batch has finished and a new batch has started.

    This leaves quite some capacity of a e.g. 16-core machine unused - at least that is my impression when observing the run via top or ps. In the dockstream.config, parallelization.number_cores is set to 16.

    Are there better practical settings to better exploit larger machines with 16-64 CPUs ?

    Lars

    opened by LarsAC 3
  • No module named 'ccdc'

    No module named 'ccdc'

    I believe I successfully installed the normal (not Full) DockStream package as per your instructions on the github site, and then tried to run the unit test, but this fails with a complaint regarding the ccdc module missing (see below). But I want to use Glide so wouldn’t need (nor have) ccdc. I am doing this on Ubuntu 18.04.

    Dockstream/python ./unit_tests.py Traceback (most recent call last): File "./unit_tests.py", line 10, in from tests.Gold import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/init.py", line 1, in from tests.Gold.test_Gold_target_preparation import * File "/media/data/evehom/Projects/CompChem/DockStream/tests/Gold/test_Gold_target_preparation.py", line 11, in from dockstream.core.Gold.Gold_target_preparator import GoldTargetPreparator File "/media/data/evehom/Projects/CompChem/DockStream/dockstream/core/Gold/Gold_target_preparator.py", line 3, in import ccdc ModuleNotFoundError: No module named 'ccdc'

    opened by Evert-Homan 4
Releases(v1.0.0)
Owner
AstraZeneca - Molecular AI
Software from the Molecular AI department at AstraZeneca R&D
AstraZeneca - Molecular AI
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023