PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

Related tags

Deep LearningDARDet
Overview

DARDet

PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf].

Highlights:

1. We develop a new dense anchor-free rotated object detection architecture (DARDet), which directly predicts five parameters of OBB at each spatial location.

2. Our DARDet significantly achieve state-of-the-art performance on the DOTA, UCAS-AOD, and HRSC2016 datasets with high efficiency..

Benchmark and model zoo, with extracting code nudt.

Model Backbone MS Rotate Lr schd Inf time (fps) box AP Download
DARDet R-50-FPN - - 1x 12.7 77.61 cfgmodel
DARDet R-50-FPN - 2x 12.7 78.74 cfgmodel

Installation

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV

The compatible MMDetection and MMCV versions are as below. Please install the correct version of MMCV to avoid installation issues.

MMDetection version MMCV version
2.13.0 mmcv-full>=1.3.3, <1.4.0

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

  1. You can simply install mmdetection with the following commands: pip install mmdet

  2. Create a conda virtual environment and activate it.

    conda create -n open-mmlab python=3.7 -y
    conda activate open-mmlab
  3. Install PyTorch and torchvision following the official instructions, e.g.,

    conda install pytorch torchvision -c pytorch

    Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.

    E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  4. Install mmcv-full, we recommend you to install the pre-build package as below.

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

    Please replace {cu_version} and {torch_version} in the url to your desired one. For example, to install the latest mmcv-full with CUDA 11 and PyTorch 1.7.0, use the following command:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
    cd ..

    Or directly run

    pip install mmcv-full
  5. Clone the DARDet repository.

    cd DARDet

    
    
  6. Install build requirements and then install DARDet

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    
  7. Install DOTA_devkit

    sudo apt-get install swig
    cd DOTA_devkit/polyiou
    swig -c++ -python csrc/polyiou.i
    python setup.py build_ext --inplace
    

Prepare DOTA dataset.

It is recommended to symlink the dataset root to `ReDet/data`.

Here, we give an example for single scale data preparation of DOTA-v1.5.

First, make sure your initial data are in the following structure.
```
data/dota15
├── train
│   ├──images
│   └── labelTxt
├── val
│   ├── images
│   └── labelTxt
└── test
    └── images
```
Split the original images and create COCO format json. 
```
python DOTA_devkit/prepare_dota1_5.py --srcpath path_to_dota --dstpath path_to_split_1024
```
Then you will get data in the following structure
```
dota15_1024
├── test1024
│   ├── DOTA_test1024.json
│   └── images
└── trainval1024
    ├── DOTA_trainval1024.json
     └── images
```
For data preparation with data augmentation, refer to "DOTA_devkit/prepare_dota1_5_v2.py"

Examples:

Assume that you have already downloaded the checkpoints to work_dirs/DARDet_r50_fpn_1x/.

  • Test DARDet on DOTA.
python tools/test.py configs/DARDet/dardet_r50_fpn_1x_dcn_val.py \
    work_dirs/dardet_r50_fpn_1x_dcn_val/epoch_12.pth \ 
    --out work_dirs/dardet_r50_fpn_1x_dcn_val/res.pkl

*If you want to evaluate the result on DOTA test-dev, zip the files in work_dirs/dardet_r50_fpn_1x_dcn_val/result_after_nms and submit it to the evaluation server.

Inference

To inference multiple images in a folder, you can run:

python demo/demo_inference.py ${CONFIG_FILE} ${CHECKPOINT} ${IMG_DIR} ${OUTPUT_DIR}

Train a model

MMDetection implements distributed training and non-distributed training, which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

*Important*: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.

Train with a single GPU

python tools/train.py ${CONFIG_FILE}

If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --validate (strongly recommended): Perform evaluation at every k (default value is 1, which can be modified like this) epochs during the training.
  • --work_dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume_from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume_from and load_from: resume_from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally. load_from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

Train with multiple machines

If you run MMDetection on a cluster managed with slurm, you can use the script slurm_train.sh.

./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16

You can check slurm_train.sh for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like infiniband.

Contact

Any question regarding this work can be addressed to [email protected].

A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023