(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Overview

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Official implementation of the paper

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

CVPR 2022 [oral]

Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla

[arXiv]

We present MaGNet (Monocular and Geometric Network), a novel framework for fusing single-view depth probability with multi-view geometry, to improve the accuracy, robustness and efficiency of multi-view depth estimation. For each frame, MaGNet estimates a single-view depth probability distribution, parameterized as a pixel-wise Gaussian. The distribution estimated for the reference frame is then used to sample per-pixel depth candidates. Such probabilistic sampling enables the network to achieve higher accuracy while evaluating fewer depth candidates. We also propose depth consistency weighting for the multi-view matching score, to ensure that the multi-view depth is consistent with the single-view predictions. The proposed method achieves state-of-the-art performance on ScanNet, 7-Scenes and KITTI. Qualitative evaluation demonstrates that our method is more robust against challenging artifacts such as texture-less/reflective surfaces and moving objects.

Datasets

We evaluated MaGNet on ScanNet, 7-Scenes and KITTI

ScanNet

  • In order to download ScanNet, you should submit an agreement to the Terms of Use. Please follow the instructions in this link.
  • The folder should be organized as

/path/to/ScanNet
/path/to/ScanNet/scans
/path/to/ScanNet/scans/scene0000_00 ...
/path/to/ScanNet/scans_test
/path/to/ScanNet/scans_test/scene0707_00 ...

7-Scenes

  • Download all seven scenes (Chess, Fire, Heads, Office, Pumpkin, RedKitchen, Stairs) from this link.
  • The folder should be organized as:

/path/to/SevenScenes
/path/to/SevenScenes/chess ...

KITTI

  • Download raw data from this link.
  • Download depth maps from this link
  • The folder should be organized as:

/path/to/KITTI
/path/to/KITTI/rawdata
/path/to/KITTI/rawdata/2011_09_26 ...
/path/to/KITTI/train
/path/to/KITTI/train/2011_09_26_drive_0001_sync ...
/path/to/KITTI/val
/path/to/KITTI/val/2011_09_26_drive_0002_sync ...

Download model weights

Download model weights by

python ckpts/download.py

If some files are not downloaded properly, download them manually from this link and place the files under ./ckpts.

Install dependencies

We recommend using a virtual environment.

python3.6 -m venv --system-site-packages ./venv
source ./venv/bin/activate

Install the necessary dependencies by

python3.6 -m pip install -r requirements.txt

Test scripts

If you wish to evaluate the accuracy of our D-Net (single-view), run

python test_DNet.py ./test_scripts/dnet/scannet.txt
python test_DNet.py ./test_scripts/dnet/7scenes.txt
python test_DNet.py ./test_scripts/dnet/kitti_eigen.txt
python test_DNet.py ./test_scripts/dnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.1186 0.2070 0.0493 0.2708 0.1461 0.1086 0.0515 10.0098 0.8546 0.9703 0.9928 2.2352
7-Scenes 0.1339 0.2209 0.0549 0.2932 0.1677 0.1165 0.0566 12.8807 0.8308 0.9716 0.9948 2.7941
KITTI (eigen) 0.0605 1.1331 0.2086 2.4215 0.0921 0.0075 0.0261 8.4312 0.9602 0.9946 0.9989 2.6443
KITTI (official) 0.0629 1.1682 0.2541 2.4708 0.1021 0.0080 0.0270 9.5752 0.9581 0.9905 0.9971 1.7810

In order to evaluate the accuracy of the full pipeline (multi-view), run

python test_MaGNet.py ./test_scripts/magnet/scannet.txt
python test_MaGNet.py ./test_scripts/magnet/7scenes.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_eigen.txt
python test_MaGNet.py ./test_scripts/magnet/kitti_official.txt

You should get the following results:

Dataset abs_rel abs_diff sq_rel rmse rmse_log irmse log_10 silog a1 a2 a3 NLL
ScanNet 0.0810 0.1466 0.0302 0.2098 0.1101 0.1055 0.0351 8.7686 0.9298 0.9835 0.9946 0.1454
7-Scenes 0.1257 0.2133 0.0552 0.2957 0.1639 0.1782 0.0527 13.6210 0.8552 0.9715 0.9935 1.5605
KITTI (eigen) 0.0535 0.9995 0.1623 2.1584 0.0826 0.0566 0.0235 7.4645 0.9714 0.9958 0.9990 1.8053
KITTI (official) 0.0503 0.9135 0.1667 1.9707 0.0848 0.2423 0.0219 7.9451 0.9769 0.9941 0.9979 1.4750

Training scripts

Coming soon

Citation

If you find our work useful in your research please consider citing our paper:

@InProceedings{Bae2022,
  title = {Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry}
  author = {Gwangbin Bae and Ignas Budvytis and Roberto Cipolla},
  booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2022}                         
}
Owner
Bae, Gwangbin
PhD student in Computer Vision @ University of Cambridge
Bae, Gwangbin
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022