PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

Related tags

Deep Learningpika
Overview

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi. The first release focuses on end-to-end speech recognition. We use Pytorch as deep learning engine, Kaldi for data formatting and feature extraction.

Key Features

  • On-the-fly data augmentation and feature extraction loader

  • TDNN Transformer encoder and convolution and transformer based decoder model structure

  • RNNT training and batch decoding

  • RNNT decoding with external Ngram FSTs (on-the-fly rescoring, aka, shallow fusion)

  • RNNT Minimum Bayes Risk (MBR) training

  • LAS forward and backward rescorer for RNNT

  • Efficient BMUF (Block model update filtering) based distributed training

Installation and Dependencies

In general, we recommend Anaconda since it comes with most dependencies. Other major dependencies include,

Pytorch

Please go to https://pytorch.org/ for pytorch installation, codes and scripts should be able to run against pytorch 0.4.0 and above. But we recommend 1.0.0 above for compatibility with RNNT loss module (see below)

Pykaldi and Kaldi

We use Kaldi (https://github.com/kaldi-asr/kaldi)) and PyKaldi (a python wrapper for Kaldi) for data processing, feature extraction and FST manipulations. Please go to Pykaldi website https://github.com/pykaldi/pykaldi for installation and make sure to build Pykaldi with ninja for efficiency. After following the installation process of pykaldi, you should have both Kaldi and Pykaldi dependencies ready.

CUDA-Warp RNN-Transducer

For RNNT loss module, we adopt the pytorch binding at https://github.com/1ytic/warp-rnnt

Others

Check requirements.txt for other dependencies.

Get Started

To get started, check all the training and decoding scripts located in egs directory.

I. Data preparation and RNNT training

egs/train_transducer_bmuf_otfaug.sh contains data preparation and RNNT training. One need to prepare training data and specify the training data directory,

#training data dir must contain wav.scp and label.txt files
#wav.scp: standard kaldi wav.scp file, see https://kaldi-asr.org/doc/data_prep.html 
#label.txt: label text file, the format is, uttid sequence-of-integer, where integer
#           is one-based indexing mapped label, note that zero is reserved for blank,  
#           ,eg., utt_id_1 3 5 7 10 23 
train_data_dir=

II. Continue with MBR training

With RNNT trained model, one can continued MBR training with egs/train_transducer_mbr_bmuf_otfaug.sh (assuming using the same training data, therefore data preparation is omitted). Make sure to specify the initial model,

--verbose \
--optim sgd \
--init_model $exp_dir/init.model \
--rnnt_scale 1.0 \
--sm_scale 0.8 \

III. Training LAS forward and backward rescorer

One can train a forward and backward LAS rescorer for your RNN-T model using egs/train_las_rescorer_bmuf_otfaug.sh. The LAS rescorer will share the encoder part with RNNT model, and has extra two-layer LSTM as additional encoder, make sure to specify the encoder sharing as,

--num_batches_per_epoch 526264 \
--shared_encoder_model $exp_dir/final.model \
--num_epochs 5 \

We support bi-directional LAS rescoring, i.e., forward and backward rescoring. Backward (right-to-left) rescoring is achieved by reversing sequential labels when conducting LAS model training. One can easily perform a backward LAS rescorer training by specifying,

--reverse_labels

IV. Decoding

egs/eval_transducer.sh is the main evluation script, which contains the decoding pipeline. Forward and backward LAS rescoring can be enabled by specifying these two models,

##########configs#############
#rnn transducer model
rnnt_model=
#forward and backward las rescorer model
lasrescorer_fw=
lasrescorer_bw=

Caveats

All the training and decoding hyper-parameters are adopted based on large-scale (e.g., 60khrs) training and internal evaluation data. One might need to re-tune hyper-parameters to acheive optimal performances. Also the WER (CER) scoring script is based on a Mandarin task, we recommend those who work on different languages rewrite scoring scripts.

References

[1] Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition, Chao Weng, Jia Cui, Guangsen Wang, Jun Wang, Chengzhu Yu, Dan Su, Dong Yu, InterSpeech 2018

[2] Minimum Bayes Risk Training of RNN-Transducer for End-to-End Speech Recognition, Chao Weng, Chengzhu Yu, Jia Cui, Chunlei Zhang, Dong Yu, InterSpeech 2020

Citations

@inproceedings{Weng2020,
  author={Chao Weng and Chengzhu Yu and Jia Cui and Chunlei Zhang and Dong Yu},
  title={{Minimum Bayes Risk Training of RNN-Transducer for End-to-End Speech Recognition}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={966--970},
  doi={10.21437/Interspeech.2020-1221},
  url={http://dx.doi.org/10.21437/Interspeech.2020-1221}
}

@inproceedings{Weng2018,
  author={Chao Weng and Jia Cui and Guangsen Wang and Jun Wang and Chengzhu Yu and Dan Su and Dong Yu},
  title={Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition},
  year=2018,
  booktitle={Proc. Interspeech 2018},
  pages={761--765},
  doi={10.21437/Interspeech.2018-1030},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1030}
}

Disclaimer

This is not an officially supported Tencent product

Owner
Research repositories.
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022