SwinTrack: A Simple and Strong Baseline for Transformer Tracking

Overview

SwinTrack

This is the official repo for SwinTrack.

banner

A Simple and Strong Baseline

performance

Prerequisites

Environment

conda (recommended)

conda create -y -n SwinTrack
conda activate SwinTrack
conda install -y anaconda
conda install -y pytorch torchvision cudatoolkit -c pytorch
conda install -y -c fvcore -c iopath -c conda-forge fvcore
pip install wandb
pip install timm

pip

pip install -r requirements.txt

Dataset

Download

Unzip

The paths should be organized as following:

lasot
├── airplane
├── basketball
...
├── training_set.txt
└── testing_set.txt

lasot_extension
├── atv
├── badminton
...
└── wingsuit

got-10k
├── train
│   ├── GOT-10k_Train_000001
│   ...
├── val
│   ├── GOT-10k_Val_000001
│   ...
└── test
    ├── GOT-10k_Test_000001
    ...
    
trackingnet
├── TEST
├── TRAIN_0
...
└── TRAIN_11

coco2017
├── annotations
│   ├── instances_train2017.json
│   └── instances_val2017.json
└── images
    ├── train2017
    │   ├── 000000000009.jpg
    │   ├── 000000000025.jpg
    │   ...
    └── val2017
        ├── 000000000139.jpg
        ├── 000000000285.jpg
        ...

Prepare path.yaml

Copy path.template.yaml as path.yaml and fill in the paths.

LaSOT_PATH: '/path/to/lasot'
LaSOT_Extension_PATH: '/path/to/lasot_ext'
GOT10k_PATH: '/path/to/got10k'
TrackingNet_PATH: '/path/to/trackingnet'
COCO_2017_PATH: '/path/to/coco2017'

Prepare dataset metadata cache (optional)

Download the metadata cache from google drive, and unzip it in datasets/cache/

datasets
└── cache
    ├── SingleObjectTrackingDataset_MemoryMapped
    │   └── filtered
    │       ├── got-10k-got10k_vot_train_split-train-3c1ffeb0c530522f0345d088b2f72168.np
    │       ...
    └── DetectionDataset_MemoryMapped
        └── filtered
            └── coco2017-nocrowd-train-bcd5bf68d4b87619ab451fe293098401.np

Login to wandb

Register an account at wandb, then login with command:

wandb login

Training & Evaluation

Train and evaluate on a single GPU

# Tiny
python main.py SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers

# Base
python main.py SwinTrack Base --output_dir /path/to/output -W $num_dataloader_workers

# Base-384
python main.py SwinTrack Base-384 --output_dir /path/to/output -W $num_dataloader_workers

--output_dir is optional, -W defaults to 4.

note: our code performs evaluation automatically when training is done, output is saved in /path/to/output/test_metrics.

Train and evaluate on multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers

Train and evaluate on multiple nodes with multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --master_address $master_address --distributed_node_rank $node_rank distributed_nnodes $num_nodes --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers 

Train and evaluate with run.sh helper script

# Train and evaluate on all GPUs
./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers
# Train and evaluate on multiple nodes
NODE_RANK=$NODE_INDEX NUM_NODES=$NUM_NODES MASTER_ADDRESS=$MASTER_ADDRESS DATE_WITH_TIME=$DATE_WITH_TIME ./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers 

Ablation study

The ablation study can be done by applying a small patch to the main config file.

Take the ResNet 50 backbone as the example, the rest parameters are the same as the above.

# Train and evaluate with resnet50 backbone
python main.py SwinTrack Tiny --mixin_config resnet.yaml
# or with run.sh
./run.sh SwinTrack Tiny --mixin resnet.yaml

All available config patches are listed in config/SwinTrack/Tiny/mixin.

Train and evaluate with GOT-10k dataset

python main.py SwinTrack Tiny --mixin_config got10k.yaml

Submit $output_dir/test_metrics/got10k/submit/*.zip to the GOT-10k evaluation server to get the result of GOT-10k test split.

Evaluate Existing Model

Download the pretrained model from google drive, then type:

python main.py SwinTrack Tiny --weight_path /path/to/weigth_file.pth --mixin_config evaluation.yaml --output_dir /path/to/output

Our code can evaluate the model on multiple GPUs in parallel, so all parameters above are also available.

Tracking results

Touch here google drive

Citation

@misc{lin2021swintrack,
      title={SwinTrack: A Simple and Strong Baseline for Transformer Tracking}, 
      author={Liting Lin and Heng Fan and Yong Xu and Haibin Ling},
      year={2021},
      eprint={2112.00995},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
LitingLin
LitingLin
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022