This folder contains the python code of UR5E's advanced forward kinematics model.

Overview

UR5E_robot_advanced_forward_kinematic_system

'Forward_kin_v1.py' in this repository contains the advanced forward kinematic computing system of the UR5E robot. I think no one has done this kind of job before, hoping to help those in need.
The principle is based on coordinate transformation and matrix calculation. By entering the angle of the joint angles of UR5e, the detailed coordinates of up to 48 points around the robot arm can be calculated, as shown by the yellow dots in the figure below.

These point coordinates can basically describe the position information of the key parts of the robot during the movement.

Installation

numpy + Forward_kin_v1.py

Potential application

In order to ensure that the robot can work within a specific range during autonomous work condition of the robot. The robot can automatically reset or call back by functions after touching specific boundaries. For example, reinforcement learning training requires the robot to be trained within a range. If any part of the robot's body exceeds this safety range, the robot must stop working and reset or call back.
Please see the video below. I use my hand to push the robot so that it touches the safety boundary I set in advance.
https://www.youtube.com/watch?v=7QEbURsEXJI The robot can reset itself everytime when it touched the boundary.

Different from this system and in-built UR5E safety boundary

the built-in safety boundary will force the robot to stop when it is touched, and the robot will not be able to work again without manual recovery. The existence of this system allows the robot to perform specific human instructions (such as callback or reset) before being forced to stop. Another difference is that according to my test, the built-in safety boundary of UR5E is invalid for the Wrist joint of the robot, which means that the Wrist joint can freely enter and exit the safety boundary, which is a big safety hazard.

Others

I have used this system for reinforcement learning training. I set a safety boundary as the final protection in the built-in settings of UR5e, and set a second sub-safety boundary within the safety boundary. The area between these two boundaries is the buffer, as long as any point on the robot body entering the buffer, robot will be reset.
I have tested the effectiveness of the entire system. The error on the UR5 robot in the simulator is within 0.5%. For the application on the real robot, I haven't seen any visiable problems. But in order to ensure that your machine is not damaged, please check it properly before using it.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change
Please make sure to update tests as appropriate.

Owner
Qiang Wang
PhD at UCD. Research interest: Reinforcement Learning; Computer vision&Touch; Representation learning
Qiang Wang
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023