So-ViT: Mind Visual Tokens for Vision Transformer

Related tags

Deep LearningSo-ViT
Overview

So-ViT: Mind Visual Tokens for Vision Transformer

      

Introduction

This repository contains the source code under PyTorch framework and models trained on ImageNet-1K dataset for the following paper:

@articles{So-ViT,
    author = {Jiangtao Xie, Ruiren Zeng, Qilong Wang, Ziqi Zhou, Peihua Li},
    title = {So-ViT: Mind Visual Tokens for Vision Transformer},
    booktitle = {arXiv:2104.10935},
    year = {2021}
}

The Vision Transformer (ViT) heavily depends on pretraining using ultra large-scale datasets (e.g. ImageNet-21K or JFT-300M) to achieve high performance, while significantly underperforming on ImageNet-1K if trained from scratch. We propose a novel So-ViT model toward addressing this problem, by carefully considering the role of visual tokens.

Above all, for classification head, the ViT only exploits class token while entirely neglecting rich semantic information inherent in high-level visual tokens. Therefore, we propose a new classification paradigm, where the second-order, cross-covariance pooling of visual tokens is combined with class token for final classification. Meanwhile, a fast singular value power normalization is proposed for improving the second-order pooling.

Second, the ViT employs the naïve method of one linear projection of fixed-size image patches for visual token embedding, lacking the ability to model translation equivariance and locality. To alleviate this problem, we develop a light-weight, hierarchical module based on off-the-shelf convolutions for visual token embedding.

Classification results

Classification results (single crop 224x224, %) on ImageNet-1K validation set

Network Top-1 Accuracy Pre-trained models
Paper reported Upgrade GoogleDrive BaiduCloud
So-ViT-7 76.2 76.8 Coming soon Coming soon
So-ViT-10 77.9 78.7 Coming soon Coming soon
So-ViT-14 81.8 82.3 Coming soon Coming soon
So-ViT-19 82.4 82.8 Coming soon Coming soon

Installation and Usage

  1. Install PyTorch (>=1.6.0)
  2. Install timm (==0.3.4)
  3. pip install thop
  4. type git clone https://github.com/jiangtaoxie/So-ViT
  5. prepare the dataset as follows
.
├── train
│   ├── class1
│   │   ├── class1_001.jpg
│   │   ├── class1_002.jpg
|   |   └── ...
│   ├── class2
│   ├── class3
│   ├── ...
│   ├── ...
│   └── classN
└── val
    ├── class1
    │   ├── class1_001.jpg
    │   ├── class1_002.jpg
    |   └── ...
    ├── class2
    ├── class3
    ├── ...
    ├── ...
    └── classN

for training from scracth

sh model_name.sh  # model_name = {So_vit_7/10/14/19}

Acknowledgment

pytorch: https://github.com/pytorch/pytorch

timm: https://github.com/rwightman/pytorch-image-models

T2T-ViT: https://github.com/yitu-opensource/T2T-ViT

Contact

If you have any questions or suggestions, please contact me

[email protected]

Owner
Jiangtao Xie
Jiangtao Xie
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Atif Hassan 103 Dec 14, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022