Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Overview

Autoregressive Predictive Coding

This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed in An Unsupervised Autoregressive Model for Speech Representation Learning.

APC is a speech feature extractor trained on a large amount of unlabeled data. With an unsupervised, autoregressive training objective, representations learned by APC not only capture general acoustic characteristics such as speaker and phone information from the speech signals, but are also highly accessible to downstream models--our experimental results on phone classification show that a linear classifier taking the APC representations as the input features significantly outperforms a multi-layer percepron using the surface features.

Dependencies

  • Python 3.5
  • PyTorch 1.0

Dataset

In the paper, we used the train-clean-360 split from the LibriSpeech corpus for training the APC models, and the dev-clean split for keeping track of the training loss. We used the log Mel spectrograms, which were generated by running the Kaldi scripts, as the input acoustic features to the APC models. Of course you can generate the log Mel spectrograms yourself, but to help you better reproduce our results, here we provide the links to the data proprocessed by us that can be directly fed to the APC models. We also include other data splits that we did not use in the paper for you to explore, e.g., you can try training an APC model on a larger and nosier set (e.g., train-other-500) and see if it learns more robust speech representations.

Training APC

Below we will follow the paper and use train-clean-360 and dev-clean as demonstration. Once you have downloaded the data, unzip them by running:

xz -d train-clean-360.xz
xz -d dev-clean.xz

Then, create a directory librispeech_data/kaldi and move the data into it:

mkdir -p librispeech_data/kaldi
mv train-clean-360-hires-norm.blogmel librispeech_data/kaldi
mv dev-clean-hires-norm.blogmel librispeech_data/kaldi

Now we will have to transform the data into the format loadable by the PyTorch DataLoader. To do so, simply run:

# Prepare the training set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/train-clean-360-hires-norm.blogmel --save_dir librispeech_data/preprocessed/train-clean-360-hires-norm.blogmel
# Prepare the valication set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/dev-clean-hires-norm.blogmel --save_dir librispeech_data/preprocessed/dev-clean-hires-norm-blogmel

Once the program is done, you will see a directory preprocessed/ inside librispeech_data/ that contains all the preprocessed PyTorch tensors.

To train an APC model, simply run:

python train_apc.py

By default, the trained models will be put in logs/. You can also use Tensorboard to trace the training progress. There are many other configurations you can try, check train_apc.py for more details--it is highly documented and should be self-explanatory.

Feature extraction

Once you have trained your APC model, you can use it to extract speech features from your target dataset. To do so, feed-forward the trained model on the target dataset and retrieve the extracted features by running:

_, feats = model.forward(inputs, lengths)

feats is a PyTorch tensor of shape (num_layers, batch_size, seq_len, rnn_hidden_size) where:

  • num_layers is the RNN depth of your APC model
  • batch_size is your inference batch size
  • seq_len is the maximum sequence length and is determined when you run prepare_data.py. By default this value is 1600.
  • rnn_hidden_size is the dimensionality of the RNN hidden unit.

As you can see, feats is essentially the RNN hidden states in an APC model. You can think of APC as a speech version of ELMo if you are familiar with it.

There are many ways to incorporate feats into your downstream task. One of the easiest way is to take only the outputs of the last RNN layer (i.e., feats[-1, :, :, :]) as the input features to your downstream model, which is what we did in our paper. Feel free to explore other mechanisms.

Pre-trained models

We release the pre-trained models that were used to produce the numbers reported in the paper. load_pretrained_model.py provides a simple example of loading a pre-trained model.

Reference

Please cite our paper(s) if you find this repository useful. This first paper proposes the APC objective, while the second paper applies it to speech recognition, speech translation, and speaker identification, and provides more systematic analysis on the learned representations. Cite both if you are kind enough!

@inproceedings{chung2019unsupervised,
  title = {An unsupervised autoregressive model for speech representation learning},
  author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
  booktitle = {Interspeech},
  year = {2019}
}
@inproceedings{chung2020generative,
  title = {Generative pre-training for speech with autoregressive predictive coding},
  author = {Chung, Yu-An and Glass, James},
  booktitle = {ICASSP},
  year = {2020}
}

Contact

Feel free to shoot me an email for any inquiries about the paper and this repository.

Owner
iamyuanchung
Natural language & speech processing researcher
iamyuanchung
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022