Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Overview

Autoregressive Predictive Coding

This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed in An Unsupervised Autoregressive Model for Speech Representation Learning.

APC is a speech feature extractor trained on a large amount of unlabeled data. With an unsupervised, autoregressive training objective, representations learned by APC not only capture general acoustic characteristics such as speaker and phone information from the speech signals, but are also highly accessible to downstream models--our experimental results on phone classification show that a linear classifier taking the APC representations as the input features significantly outperforms a multi-layer percepron using the surface features.

Dependencies

  • Python 3.5
  • PyTorch 1.0

Dataset

In the paper, we used the train-clean-360 split from the LibriSpeech corpus for training the APC models, and the dev-clean split for keeping track of the training loss. We used the log Mel spectrograms, which were generated by running the Kaldi scripts, as the input acoustic features to the APC models. Of course you can generate the log Mel spectrograms yourself, but to help you better reproduce our results, here we provide the links to the data proprocessed by us that can be directly fed to the APC models. We also include other data splits that we did not use in the paper for you to explore, e.g., you can try training an APC model on a larger and nosier set (e.g., train-other-500) and see if it learns more robust speech representations.

Training APC

Below we will follow the paper and use train-clean-360 and dev-clean as demonstration. Once you have downloaded the data, unzip them by running:

xz -d train-clean-360.xz
xz -d dev-clean.xz

Then, create a directory librispeech_data/kaldi and move the data into it:

mkdir -p librispeech_data/kaldi
mv train-clean-360-hires-norm.blogmel librispeech_data/kaldi
mv dev-clean-hires-norm.blogmel librispeech_data/kaldi

Now we will have to transform the data into the format loadable by the PyTorch DataLoader. To do so, simply run:

# Prepare the training set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/train-clean-360-hires-norm.blogmel --save_dir librispeech_data/preprocessed/train-clean-360-hires-norm.blogmel
# Prepare the valication set
python prepare_data.py --librispeech_from_kaldi librispeech_data/kaldi/dev-clean-hires-norm.blogmel --save_dir librispeech_data/preprocessed/dev-clean-hires-norm-blogmel

Once the program is done, you will see a directory preprocessed/ inside librispeech_data/ that contains all the preprocessed PyTorch tensors.

To train an APC model, simply run:

python train_apc.py

By default, the trained models will be put in logs/. You can also use Tensorboard to trace the training progress. There are many other configurations you can try, check train_apc.py for more details--it is highly documented and should be self-explanatory.

Feature extraction

Once you have trained your APC model, you can use it to extract speech features from your target dataset. To do so, feed-forward the trained model on the target dataset and retrieve the extracted features by running:

_, feats = model.forward(inputs, lengths)

feats is a PyTorch tensor of shape (num_layers, batch_size, seq_len, rnn_hidden_size) where:

  • num_layers is the RNN depth of your APC model
  • batch_size is your inference batch size
  • seq_len is the maximum sequence length and is determined when you run prepare_data.py. By default this value is 1600.
  • rnn_hidden_size is the dimensionality of the RNN hidden unit.

As you can see, feats is essentially the RNN hidden states in an APC model. You can think of APC as a speech version of ELMo if you are familiar with it.

There are many ways to incorporate feats into your downstream task. One of the easiest way is to take only the outputs of the last RNN layer (i.e., feats[-1, :, :, :]) as the input features to your downstream model, which is what we did in our paper. Feel free to explore other mechanisms.

Pre-trained models

We release the pre-trained models that were used to produce the numbers reported in the paper. load_pretrained_model.py provides a simple example of loading a pre-trained model.

Reference

Please cite our paper(s) if you find this repository useful. This first paper proposes the APC objective, while the second paper applies it to speech recognition, speech translation, and speaker identification, and provides more systematic analysis on the learned representations. Cite both if you are kind enough!

@inproceedings{chung2019unsupervised,
  title = {An unsupervised autoregressive model for speech representation learning},
  author = {Chung, Yu-An and Hsu, Wei-Ning and Tang, Hao and Glass, James},
  booktitle = {Interspeech},
  year = {2019}
}
@inproceedings{chung2020generative,
  title = {Generative pre-training for speech with autoregressive predictive coding},
  author = {Chung, Yu-An and Glass, James},
  booktitle = {ICASSP},
  year = {2020}
}

Contact

Feel free to shoot me an email for any inquiries about the paper and this repository.

Owner
iamyuanchung
Natural language & speech processing researcher
iamyuanchung
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022