This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

Related tags

Deep LearningSeerNet
Overview

SeerNet

​ This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is in submission to TPAMI. This repo contains active sampling for training the performance predictor, optimizing the compression policy and finetuning on two datasets(VGG-small, ResNet20 on Cifar-10; ResNet18, MobileNetv2, ResNet50 on ImageNet) using our proposed SeerNet.

​ As for the entire pipeline, we firstly get a few random samples to pretrain the MLP predictor. After getting the pretrained predictor, we execute active sampling using evolution search to get samples, which are used to further optimize the predictor above. Then we search for optimal compression policy under given constraint utilizing the predictor. Finally, we finetune the policy until convergence.

Quick Start

Prerequisites

  • python>=3.5
  • pytorch>=1.1.0
  • torchvision>=0.3.0
  • other packages like numpy and sklearn

Dataset

If you already have the ImageNet dataset for pytorch, you could create a link to data folder and use it:

# prepare dataset, change the path to your own
ln -s /path/to/imagenet/ data/

If you don't have the ImageNet, you can use the following script to download it: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Active Sampling

You can run the following command to actively search the samples by evolution algorithm:

CUDA_VISIBLE_DEVICES=0 python PGD/search.py --sample_path=results/res18/resnet18_sample.npy --acc_path=results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=1000 --save_path=search_result.npy --dim=57

Training performance predictor

You can run the following command to training the MLP predictor:

CUDA_VISIBLE_DEVICES=0 python PGD/regression/regression.py --sample_path=../results/res18/resnet18_sample.npy --acc_path=../results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=5000 --dim=57

Compression Policy Optimization

After training the performance predictor, you can run the following command to optimize the compression policy:


# for resnet18, please use
python PGD/pgd_search.py --arch qresnet18 --layer_nums 19 --step_size 0.005 --max_bops 30 --pretrained_weight path\to\weight 


# for mobilenetv2, please use
python PGD/pgd_search.py --arch qmobilenetv2 --layer_nums 53 --step_size 0.005 --max_bops 8 --pretrained_weight path\to\weight 


# for resnet50, please use
python PGD/pgd_search.py --arch qresnet50 --layer_nums 52 --step_size 0.005 --max_bops 65 --pretrained_weight path\to\weight 

Finetune Policy

After optimizing, you can get the optimal quantization and pruning strategy list, and you can replace the strategy list in finetune_imagenet.py to finetune and evaluate the performance on ImageNet dataset. You can also use the default strategy to reproduce the results in our paper.

For finetuning ResNet18 on ImageNet, please run:

bash run/finetune_resnet18.sh

For finetuning MobileNetv2 on ImageNet, please run:

bash run/finetune_mobilenetv2.sh

For finetuning ResNet50 on ImageNet, please run:

bash run/finetune_resnet50.sh
Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022