HistoKT: Cross Knowledge Transfer in Computational Pathology

Related tags

Deep LearningHistoKT
Overview

HistoKT: Cross Knowledge Transfer in Computational Pathology

Exciting News! HistoKT has been accepted to ICASSP 2022.

HistoKT: Cross Knowledge Transfer in Computational Pathology,
Ryan Zhang, Jiadai Zhu, Stephen Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen, Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, Konstantinos N. Plataniotis
Accepted in 2022 IEEE International Conference on Acourstics, Speech, and Signal Processing (ICASSP2022)

Overview

In computational pathology, the lack of well-annotated datasets obstructs the application of deep learning techniques. Since pathologist time is expensive, dataset curation is intrinsically difficult. Thus, many CPath workflows involve transferring learned knowledge between various image domains through transfer learning. Currently, most transfer learning research follows a model-centric approach, tuning network parameters to improve transfer results over few datasets. In this paper, we take a data-centric approach to the transfer learning problem and examine the existence of generalizable knowledge between histopathological datasets. First, we create a standardization workflow for aggregating existing histopathological data. We then measure inter-domain knowledge by training ResNet18 models across multiple histopathological datasets, and cross-transferring between them to determine the quantity and quality of innate shared knowledge. Additionally, we use weight distillation to share knowledge between models without additional training. We find that hard to learn, multi-class datasets benefit most from pretraining, and a two stage learning framework incorporating a large source domain such as ImageNet allows for better utilization of smaller datasets. Furthermore, we find that weight distillation enables models trained on purely histopathological features to outperform models using external natural image data.

Results

We report our transfer learning using ResNet18 results accross various datasets, with two initialization methods (random and ImageNet initialization). Each item in the matrix represents the Top-1 test accuracy of a ResNet18 model trained on the source dataset and deep-tuned on the target dataset. Items are highlighted in a colour gradient from deep red to deep green, where green represents significant accuracy improvement after tuning, and red represents accuracy decline after tuning.

No Pretraining

ImageNet Initialization

Table of Contents

Getting Started

Dependencies

  • Requirements are specified in requirements.txt
argon2-cffi==20.1.0
async-generator==1.10
attrs==21.2.0
backcall==0.2.0
bleach==3.3.0
cffi==1.14.5
colorama==0.4.4
cycler==0.10.0
decorator==4.4.2
defusedxml==0.7.1
entrypoints==0.3
et-xmlfile==1.1.0
h5py==3.2.1
imageio==2.9.0
ipykernel==5.5.4
ipython==7.23.1
ipython-genutils==0.2.0
ipywidgets==7.6.3
jedi==0.18.0
Jinja2==3.0.0
joblib==1.0.1
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==6.1.12
jupyter-console==6.4.0
jupyter-core==4.7.1
jupyterlab-pygments==0.1.2
jupyterlab-widgets==1.0.0
kiwisolver==1.3.1
MarkupSafe==2.0.0
matplotlib==3.4.2
matplotlib-inline==0.1.2
mistune==0.8.4
nbclient==0.5.3
nbconvert==6.0.7
nbformat==5.1.3
nest-asyncio==1.5.1
networkx==2.5.1
notebook==6.3.0
numpy==1.20.3
openpyxl==3.0.7
packaging==20.9
pandas==1.2.4
pandocfilters==1.4.3
parso==0.8.2
pickleshare==0.7.5
Pillow==8.2.0
prometheus-client==0.10.1
prompt-toolkit==3.0.18
pyaml==20.4.0
pycparser==2.20
Pygments==2.9.0
pyparsing==2.4.7
pyrsistent==0.17.3
python-dateutil==2.8.1
pytz==2021.1
PyWavelets==1.1.1
pywin32==300
pywinpty==0.5.7
PyYAML==5.4.1
pyzmq==22.0.3
qtconsole==5.1.0
QtPy==1.9.0
scikit-image==0.18.1
scikit-learn==0.24.2
scipy==1.6.3
Send2Trash==1.5.0
six==1.16.0
sklearn==0.0
terminado==0.9.5
testpath==0.4.4
threadpoolctl==2.1.0
tifffile==2021.4.8
torch==1.8.1+cu102
torchaudio==0.8.1
torchvision==0.9.1+cu102
tornado==6.1
traitlets==5.0.5
typing-extensions==3.10.0.0
wcwidth==0.2.5
webencodings==0.5.1
widgetsnbextension==3.5.1

Running the Code

This codebase was created in collaboration with the RMSGD repository. As such, much of the training pipeline is shared.

Downloading datasets

All available datasets can be found on their respective websites. Some datasets, such as ADP, are available by request.

A list of all datasets used in this paper can be found below:

Preprocessing and Training

To prepare datasets for training, please use the functions found in dataset_processing\standardize_datasets.py after downloading all the datasets and placing them all in one folder.

cd HistoKT/dataset_processing
python standardize_datasets.py

A standardized version of each dataset will be created in the dataset folder.

To run the code for training, use the src/adas/train.py file:

cd HistoKT
python src/adas/train.py --config CONFIG --data DATA_FOLDER

Options for Training

--config CONFIG       Set configuration file path: Default = 'configAdas.yaml'
--data DATA           Set data directory path: Default = '.adas-data'
--output OUTPUT       Set output directory path: Default = '.adas-output'
--checkpoint CHECKPOINT
                    Set checkpoint directory path: Default = '.adas-checkpoint'
--resume RESUME       Set checkpoint resume path: Default = None
--pretrained_model PRETRAINED_MODEL
                    Set checkpoint pretrained model path: Default = None
--freeze_encoder FREEZE_ENCODER
                    Set if to freeze encoder for post training: Default = True
--root ROOT           Set root path of project that parents all others: Default = '.'
--save-freq SAVE_FREQ
                    Checkpoint epoch save frequency: Default = 25
--cpu                 Flag: CPU bound training: Default = False
--gpu GPU             GPU id to use: Default = 0
--multiprocessing-distributed
                    Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either   
                    single node or multi node data parallel training: Default = False
--dist-url DIST_URL   url used to set up distributed training:Default = 'tcp://127.0.0.1:23456'
--dist-backend DIST_BACKEND
                    distributed backend: Default = 'nccl'
--world-size WORLD_SIZE
                    Number of nodes for distributed training: Default = -1
--rank RANK           Node rank for distributed training: Default = -1
--color_aug COLOR_AUG
                    override config color augmentation, can also choose "no_aug"
--norm_vals NORM_VALS
                    override normalization values, use dataset string. e.g. "BACH_transformed"

Training Output

All training output will be saved to the OUTPUT_PATH location. After a full experiment, results will be recorded in the following format:

  • OUTPUT
    • Timestamped xlsx sheet with the record of train and validation (notated as test) acc, loss, and rank metrics for each layer in the network (refer to AdaS)
  • CHECKPOINT
    • checkpoint dictionaries with a snapshot of the model's parameters at a given epoch.

Code Organization

Configs

We provide sample configuration files for ResNet18 over all used datasets in configs\NewPretrainingConfigs

These configs were used for training the model on each dataset from random initialization.

All available options can be found in the config files.

Visualization

We provide sample code to plot training curves in Plots

We provide sample code on using the statistical method t-SNE to visualize the high-dimensional features in T-sne.

We provide sample code on using the visual explanation algorithm Grad-CAM heat-maps in gradCAM.

Version History

  • 0.1
    • Initial Release
Owner
Mahdi S. Hosseini
Assistant Professor in ECE Department at University of New Brunswick. My research interests cover broad topics in Machine Learning and Computer Vision problems
Mahdi S. Hosseini
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Xi Dongbo 78 Nov 29, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022