Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Overview

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

This repository hosts the code related to the paper:

Marco Rosano, Antonino Furnari, Luigi Gulino, Corrado Santoro and Giovanni Maria Farinella, "Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation". Submitted to "Robotics and Autonomous Systems" (RAS), 2022.

For more details please see the project web page at https://iplab.dmi.unict.it/EmbodiedVN.

Overview

This code is built on top of the Habitat-api/Habitat-lab project. Please see the Habitat project page for more details.

This repository provides the following components:

  1. The implementation of the proposed tool, integrated with Habitat, to train visual navigation models on synthetic observations and test them on realistic episodes containing real-world images. This allows the estimation of real-world performance, avoiding the physical deployment of the robotic agent;

  2. The official PyTorch implementation of the proposed visual navigation models, which follow different strategies to combine a range of visual mid-level representations

  3. the synthetic 3D model of the proposed environment, acquired using the Matterport 3D scanner and used to perform the navigation episodes at train and test time;

  4. the photorealistic 3D model that contains real-world images of the proposed environment, labeled with their pose (X, Z, Angle). The sparse 3D reconstruction was performed using the COLMAP Structure from Motion tool, to then be aligned with the Matterport virtual 3D map.

  5. An integration with CycleGAN to train and evaluate navigation models with Habitat on sim2real adapted images.

  6. The checkpoints of the best performing navigation models.

Installation

Requirements

  • Python >= 3.7, use version 3.7 to avoid possible issues.
  • Other requirements will be installed via pip in the following steps.

Steps

  1. (Optional) Create an Anaconda environment and install all on it ( conda create -n fusion-habitat python=3.7; conda activate fusion-habitat )

  2. Install the Habitat simulator following the official repo instructions .The development and testing was done on commit bfbe9fc30a4e0751082824257d7200ad543e4c0e, installing the simulator "from source", launching the ./build.sh --headless --with-cuda command (guide). Please consider to follow these suggestions if you encounter issues while installing the simulator.

  3. Install the customized Habitat-lab (this repo):

    git clone https://github.com/rosanom/mid-level-fusion-nav.git
    cd mid-level-fusion-nav/
    pip install -r requirements.txt
    python setup.py develop --all # install habitat and habitat_baselines
    
  4. Download our dataset (journal version) from here, and extract it to the repository folder (mid-level-fusion-nav/). Inside the data folder you should see this structure:

    datasets/pointnav/orangedev/v1/...
    real_images/orangedev/...
    scene_datasets/orangedev/...
    orangedev_checkpoints/...
    
  5. (Optional, to check if the software works properly) Download the test scenes data and extract the zip file to the repository folder (mid-level-fusion-nav/). To verify that the tool was successfully installed, run python examples/benchmark.py or python examples/example.py.

Data Structure

All data can be found inside the mid-level-fusion-nav/data/ folder:

  • the datasets/pointnav/orangedev/v1/... folder contains the generated train and validation navigation episodes files;
  • the real_images/orangedev/... folder contains the real world images of the proposed environment and the csv file with their pose information (obtained with COLMAP);
  • the scene_datasets/orangedev/... folder contains the 3D mesh of the proposed environment.
  • orangedev_checkpoints/ is the folder where the checkpoints are saved during training. Place the checkpoint file here if you want to restore the training process or evaluate the model. The system will load the most recent checkpoint file.

Config Files

There are two configuration files:

habitat_domain_adaptation/configs/tasks/pointnav_orangedev.yaml

and

habitat_domain_adaptation/habitat_baselines/config/pointnav/ddppo_pointnav_orangedev.yaml.

In the first file you can change the robot's properties, the sensors used by the agent and the dataset used in the experiment. You don't have to modify it.

In the second file you can decide:

  1. if evaluate the navigation models using RGB or mid-level representations;
  2. the set of mid-level representations to use;
  3. the fusion architecture to use;
  4. if train or evaluate the models using real images, or using the CycleGAN sim2real adapted observations.
...
EVAL_W_REAL_IMAGES: True
EVAL_CKPT_PATH_DIR: "data/orangedev_checkpoints/"

SIM_2_REAL: False #use cycleGAN for sim2real image adaptation?

USE_MIDLEVEL_REPRESENTATION: True
MIDLEVEL_PARAMS:
ENCODER: "simple" # "simple", SE_attention, "mid_fusion", ...
FEATURE_TYPE: ["normal"] #["normal", "keypoints3d","curvature", "depth_zbuffer"]
...

CycleGAN Integration (baseline)

In order to use CycleGAN on Habitat for the sim2real domain adaptation during train or evaluation, follow the steps suggested in the repository of our previous resease.

Train and Evaluation

To train the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev.sh

To evaluate the navigation model using the DD-PPO RL algorithm, run:

sh habitat_baselines/rl/ddppo/single_node_orangedev_eval.sh

For more information about DD-PPO RL algorithm, please check out the habitat-lab dd-ppo repo page.

License

The code in this repository, the 3D models and the images of the proposed environment are MIT licensed. See the LICENSE file for details.

The trained models and the task datasets are considered data derived from the correspondent scene datasets.

Acknowledgements

This research is supported by OrangeDev s.r.l, by Next Vision s.r.l, the project MEGABIT - PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIACERI) – linea di intervento 2, DMI - University of Catania, and the grant MIUR AIM - Attrazione e Mobilità Internazionale Linea 1 - AIM1893589 - CUP E64118002540007.

Owner
First Person Vision @ Image Processing Laboratory - University of Catania
First Person Vision @ Image Processing Laboratory - University of Catania
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022