2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

Overview

TableMASTER-mmocr

Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Result
  5. License
  6. Acknowledgements

About The Project

This project presents our 2nd place solution for ICDAR 2021 Competition on Scientific Literature Parsing, Task B. We reimplement our solution by MMOCR,which is an open-source toolbox based on PyTorch. You can click here for more details about this competition. Our original implementation is based on FastOCR (one of our internal toolbox similar with MMOCR).

Method Description

In our solution, we divide the table content recognition task into four sub-tasks: table structure recognition, text line detection, text line recognition, and box assignment. Based on MASTER, we propose a novel table structure recognition architrcture, which we call TableMASTER. The difference between MASTER and TableMASTER will be shown below. You can click here for more details about this solution.

MASTER's architecture

Dependency

Getting Started

Prerequisites

  • Competition dataset PubTabNet, click here for downloading.
  • About PubTabNet, check their github and paper.
  • About the metric TEDS, see github

Installation

  1. Install mmdetection. click here for details.

    # We embed mmdetection-2.11.0 source code into this project.
    # You can cd and install it (recommend).
    cd ./mmdetection-2.11.0
    pip install -v -e .
  2. Install mmocr. click here for details.

    # install mmocr
    cd ./MASTER_mmocr
    pip install -v -e .
  3. Install mmcv-full-1.3.4. click here for details.

    pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
    
    # install mmcv-full-1.3.4 with torch version 1.8.0 cuda_version 10.2
    pip install mmcv-full==1.3.4 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

Usage

Data preprocess

Run data_preprocess.py to get valid train data. Remember to change the 'raw_img_root' and ‘save_root’ property of PubtabnetParser to your path.

python ./table_recognition/data_preprocess.py

It will about 8 hours to finish parsing 500777 train files. After finishing the train set parsing, change the property of 'split' folder in PubtabnetParser to 'val' and get formatted val data.

Directory structure of parsed train data is :

.
├── StructureLabelAddEmptyBbox_train
│   ├── PMC1064074_007_00.txt
│   ├── PMC1064076_003_00.txt
│   ├── PMC1064076_004_00.txt
│   └── ...
├── recognition_train_img
│   ├── 0
│       ├── PMC1064100_007_00_0.png
│       ├── PMC1064100_007_00_10.png
│       ├── ...
│       └── PMC1064100_007_00_108.png
│   ├── 1
│   ├── ...
│   └── 15
├── recognition_train_txt
│   ├── 0.txt
│   ├── 1.txt
│   ├── ...
│   └── 15.txt
├── structure_alphabet.txt
└── textline_recognition_alphabet.txt

Train

  1. Train text line detection model with PSENet.

    sh ./table_recognition/table_text_line_detection_dist_train.sh

    We don't offer PSENet train data here, you can create the text line annotations by open source label software. In our experiment, we only use 2,500 table images to train our model. It gets a perfect text line detection result on validation set.

  2. Train text-line recognition model with MASTER.

    sh ./table_recognition/table_text_line_recognition_dist_train.sh

    We can get about 30,000,000 text line images from 500,777 training images and 550,000 text line images from 9115 validation images. But we only select 20,000 text line images from 550,000 dataset for evaluatiing after each trainig epoch, to pick up the best text line recognition model.

    Note that our MASTER OCR is directly trained on samples mixed with single-line texts and multiple-line texts.

  3. Train table structure recognition model, with TableMASTER.

    sh ./table_recognition/table_recognition_dist_train.sh

Inference

To get final results, firstly, we need to forward the three up-mentioned models, respectively. Secondly, we merge the results by our matching algorithm, to generate the final HTML code.

  1. Models inference. We do this to speed up the inference.
python ./table_recognition/run_table_inference.py

run_table_inference.py wil call table_inference.py and use multiple gpu devices to do model inference. Before running this script, you should change the value of cfg in table_inference.py .

Directory structure of text line detection and text line recognition inference results are:

# If you use 8 gpu devices to inference, you will get 8 detection results pickle files, one end2end_result pickle files and 8 structure recognition results pickle files. 
.
├── end2end_caches
│   ├── end2end_results.pkl
│   ├── detection_results_0.pkl
│   ├── detection_results_1.pkl
│   ├── ...
│   └── detection_results_7.pkl
├── structure_master_caches
│   ├── structure_master_results_0.pkl
│   ├── structure_master_results_1.pkl
│   ├── ...
│   └── structure_master_results_7.pkl
  1. Merge results.
python ./table_recognition/match.py

After matching, congratulations, you will get final result pickle file.

Get TEDS score

  1. Installation.

    pip install -r ./table_recognition/PubTabNet-master/src/requirements.txt
  2. Get gtVal.json.

    python ./table_recognition/get_val_gt.py
  3. Calcutate TEDS score. Before run this script, modify pred file path and gt file path in mmocr_teds_acc_mp.py

    python ./table_recognition/PubTabNet-master/src/mmocr_teds_acc_mp.py

Result

Text line end2end recognition accuracy

Models Accuracy
PSENet + MASTER 0.9885

Structure recognition accuracy

Model architecture Accuracy
TableMASTER_maxlength_500 0.7808
TableMASTER_ConcatLayer_maxlength_500 0.7821
TableMASTER_ConcatLayer_maxlength_600 0.7799

TEDS score

Models TEDS
PSENet + MASTER + TableMASTER_maxlength_500 0.9658
PSENet + MASTER + TableMASTER_ConcatLayer_maxlength_500 0.9669
PSENet + MASTER + ensemble_TableMASTER 0.9676

In this paper, we reported 0.9684 TEDS score in validation set (9115 samples). The gap between 0.9676 and 0.9684 comes from that we ensemble three text line models in the competition, but here, we only use one model. Of course, hyperparameter tuning will also affect TEDS score.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citations

@article{ye2021pingan,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML},
  author={Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong},
  journal={arXiv preprint arXiv:2105.01848},
  year={2021}
}
@article{He2021PingAnVCGroupsSF,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Table Image Recognition to Latex},
  author={Yelin He and Xianbiao Qi and Jiaquan Ye and Peng Gao and Yihao Chen and Bingcong Li and Xin Tang and Rong Xiao},
  journal={ArXiv},
  year={2021},
  volume={abs/2105.01846}
}
@article{Lu2021MASTER,
  title={{MASTER}: Multi-Aspect Non-local Network for Scene Text Recognition},
  author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong Xiao and Xiang Bai},
  journal={Pattern Recognition},
  year={2021}
}
@article{li2018shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Li, Xiang and Wang, Wenhai and Hou, Wenbo and Liu, Ruo-Ze and Lu, Tong and Yang, Jian},
  journal={arXiv preprint arXiv:1806.02559},
  year={2018}
}

Acknowledgements

Owner
Jianquan Ye
Jianquan Ye
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021