We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview

Overview

This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which will be presented as a poster paper in NeurIPS'21.

In this work, we propose a regularized self-labeling approach that combines regularization and self-training methods for improving the generalization and robustness properties of fine-tuning. Our approach includes two components:

  • First, we encode layer-wise regularization to penalize the model weights at different layers of the neural net.
  • Second, we add self-labeling that relabels data points based on current neural net's belief and reweights data points whose confidence is low.

Requirements

To install requirements:

pip install -r requirements.txt

Data Preparation

We use seven image datasets in our paper. We list the link for downloading these datasets and describe how to prepare data to run our code below.

  • Aircrafts: download and extract into ./data/aircrafts
    • remove the class 257.clutter out of the data directory
  • CUB-200-2011: download and extract into ./data/CUB_200_2011/
  • Caltech-256: download and extract into ./data/caltech256/
  • Stanford-Cars: download and extract into ./data/StanfordCars/
  • Stanford-Dogs: download and extract into ./data/StanfordDogs/
  • Flowers: download and extract into ./data/flowers/
  • MIT-Indoor: download and extract into ./data/Indoor/

Our code automatically handles the split of the datasets.

Usage

Our algorithm (RegSL) interpolates between layer-wise regularization and self-labeling. Run the following commands for conducting experiments in this paper.

Fine-tuning ResNet-101 on image classification tasks.

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_indoor.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.136809975858091 --reg_predictor 6.40780158171339 --scale_factor 2.52883770643206\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_aircrafts.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 1.18330556653284 --reg_predictor 5.27713618808711 --scale_factor 1.27679969876201\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_birds.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.204403908747731 --reg_predictor 23.7850606577679 --scale_factor 4.73803591794678\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_caltech.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.0867998872549272 --reg_predictor 9.4552942790218 --scale_factor 1.1785989596144\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_cars.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 1.3340347414257 --reg_predictor 8.26940794089601 --scale_factor 3.47676759842434\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_dogs.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.0561320847651626 --reg_predictor 4.46281825974388 --scale_factor 1.58722606909531\
    --device 1

python train_constraint.py --model ResNet101 \
    --config configs/config_constraint_flower.json \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.131991042311165 --reg_predictor 10.7674132173309 --scale_factor 4.98010215976503\
    --device 1

Fine-tuning ResNet-18 under label noise.

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 7.80246991703043 --reg_predictor 14.077402847906 \
    --noise_rate 0.2 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 8.47139398080791 --reg_predictor 19.0191127114923 \
    --noise_rate 0.4 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 

python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 10.7576018531961 --reg_predictor 19.8157649727473 \
    --noise_rate 0.6 --train_correct_label --reweight_epoch 5 --reweight_temp 2.0 --correct_epoch 10 --correct_thres 0.9 
    
python train_label_noise.py --config configs/config_constraint_indoor.json --model ResNet18 \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 9.2031662757248 --reg_predictor 6.41568500472423 \
    --noise_rate 0.8 --train_correct_label --reweight_epoch 5 --reweight_temp 1.5 --correct_epoch 10 --correct_thres 0.9 

Fine-tuning Vision Transformer on noisy labels.

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method none --reg_norm none \
    --lr 0.0001 --device 1 --noise_rate 0.4

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method none --reg_norm none \
    --lr 0.0001 --device 1 --noise_rate 0.8

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.7488074175044196 --reg_predictor 9.842955837419588 \
    --train_correct_label --reweight_epoch 24 --correct_epoch 18\
    --lr 0.0001 --device 1 --noise_rate 0.4

python train_label_noise.py --config configs/config_constraint_indoor.json \
    --model VisionTransformer --is_vit --img_size 224 --vit_type ViT-B_16 --vit_pretrained_dir pretrained/imagenet21k_ViT-B_16.npz \
    --reg_method constraint --reg_norm frob \
    --reg_extractor 0.1568903647089986 --reg_predictor 1.407080880079702 \
    --train_correct_label --reweight_epoch 18 --correct_epoch 2\
    --lr 0.0001 --device 1 --noise_rate 0.8

Please follow the instructions in ViT-pytorch to download the pre-trained models.

Fine-tuning ResNet-18 on ChestX-ray14 data set.

Run experiments on ChestX-ray14 in reproduce-chexnet path:

cd reproduce-chexnet

python retrain.py --reg_method None --reg_norm None --device 0

python retrain.py --reg_method constraint --reg_norm frob \
    --reg_extractor 5.728564437344309 --reg_predictor 2.5669480884876905 --scale_factor 1.0340072757925474 \
    --device 0

Citation

If you find this repository useful, consider citing our work titled above.

Acknowledgment

Thanks to the authors of the following repositories for providing their implementation publicly available.

Owner
NEU-StatsML-Research
We are a group of faculty and students from the Computer Science College of Northeastern University
NEU-StatsML-Research
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022