This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Overview

teaset

AtlasNet V2 - Learning Elementary Structures

This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a look at those)

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

Citing this work

If you find this work useful in your research, please consider citing:

@inproceedings{deprelle2019learning,
  title={Learning elementary structures for 3D shape generation and matching},
  author={Deprelle, Theo and Groueix, Thibault and Fisher, Matthew and Kim, Vladimir and Russell, Bryan and Aubry, Mathieu},
  booktitle={Advances in Neural Information Processing Systems},
  pages={7433--7443},
  year={2019}
}

Project Page

The project page is available http://imagine.enpc.fr/~deprellt/atlasnet2/

Install

Clone the repo and install dependencies

This implementation uses Pytorch.

## Download the repository
git clone https://github.com/TheoDEPRELLE/AtlasNetV2.git
cd AtlasNetV2
## Create python env with relevant packages
conda create --name atlasnetV2 python=3.7
source activate atlasnetV2
pip install pandas visdom
conda install pytorch torchvision -c pytorch
conda install -c conda-forge matplotlib
# you're done ! Congrats :)

Training

Data

cd data; ./download_data.sh; cd ..

We used the ShapeNet dataset for 3D models.

When using the provided data make sure to respect the shapenet license.

The trained models and some corresponding results are also available online :

Build chamfer distance

The chamfer loss is based on a custom cuda code that need to be compile.

source activate pytorch-atlasnet
cd ./extension
python setup.py install

Start training

  • First launch a visdom server :
python -m visdom.server -p 8888
  • Check out all the options :
git pull; python training/train.py --help
  • Run the baseline :
git pull; python training/train.py --model AtlasNet --adjust mlp
git pull; python training/train.py --model AtlasNet --adjust linear
  • Run the Patch Deformation module with the different adjustment modules :
git pull; python training/train.py --model PatchDeformation --adjust mlp
git pull; python training/train.py --model PatchDeformation --adjust linear
  • Run the Point Translation module with the different adjustment modules:
git pull; python training/train.py --model PointTranslation --adjust mlp
git pull; python training/train.py --model PointTranslation --adjust linear

Models

The models train on the SURREAL dataset for the FAUST competition can be found here

Acknowledgement

This work was partly supported by ANR project EnHerit ANR-17-CE23-0008, Labex Bezout, and gifts from Adobe to Ecole des Ponts.

License

MIT

Comments
  • Unable to download shapenet data

    Unable to download shapenet data

    Hi,

    I am trying to download data form download.sh script. But it is giving 404 error.

    --2020-12-01 14:38:25-- https://cloud.enpc.fr/s/j2ECcKleA1IKNzk/download Resolving cloud.enpc.fr (cloud.enpc.fr)... 195.221.193.80 Connecting to cloud.enpc.fr (cloud.enpc.fr)|195.221.193.80|:443... connected. HTTP request sent, awaiting response... 404 Not Found 2020-12-01 14:38:26 ERROR 404: Not Found.

    could you please provide an alternative link?

    opened by brjathu 11
  • Question about evaluation critetion in paper?

    Question about evaluation critetion in paper?

    image Here, it is said that the reconstruction task is evaluated by chamfer distance. But for surreal data, the ground-truth correspondences are known. Why not just compute the L2 distance for correponding points?

    opened by GostInShell 3
  • How to Generate 16384 points for Point Translation Module?

    How to Generate 16384 points for Point Translation Module?

    As discussed in https://github.com/ThibaultGROUEIX/AtlasNet/issues/42, I want to upsample the results of the point translation module. Since this module takes a fixed number of points into the network. I don't know whether training a new model taking 16384 points as input is justifiable to compare with our method.

    opened by hzxie 2
  • The question about initialization of 'rand_grid' in the ./auxiliary/model.py

    The question about initialization of 'rand_grid' in the ./auxiliary/model.py

    I have a question. In the file 'model.py', line 378,379, why the variable 'rand_grid' is initialized to uniform(0,1) before it is initialized to zero. What is the reason? Thanks!

    bug 
    opened by tommaoer 2
  • Two bugs when running train.py

    Two bugs when running train.py

    First bug is

    Traceback (most recent call last):
      File "training/train.py", line 140, in <module>
        visdom = visdom.Visdom(env=opt.training_id, port=8888)
    TypeError: __init__() got an unexpected keyword argument 'env'
    

    and I delete env=opt.training_id, then i re-run this code. And Second bug is

    Traceback (most recent call last):
      File "training/train.py", line 209, in <module>
        color =  [[125,125,125]]*(batch.size(1))
    NameError: name 'batch' is not defined
    
    opened by Yuzuki-N 0
  • unused model in PointTransLinAdj

    unused model in PointTransLinAdj

    It seems that a deformation layer is defined and not used. https://github.com/TheoDEPRELLE/AtlasNetV2/blob/master/auxiliary/model.py#L302

    Did you intend to use this model?

    opened by orenkatzir 0
  • About visualization

    About visualization

    Hi, first thanks for your inspiring work! Point cloud rendering figures in your paper are beautiful as follows. How do you draw it? Using open3d, meshlab or other programmes?

    Thanks! image

    opened by StevenZzz07 0
  • Pretrained Models

    Pretrained Models

    Hi,

    I am trying to download data from https://cloud.enpc.fr/s/c27Df7fRNXW2uG3, but i get an 404 error. Could you please provide an alternative link? Thanks

    opened by rspezialetti 0
  • The problem of test.

    The problem of test.

    Dear professor, I have read the paper of " Learning Elementary Structures",and I have some problems. I have trained this network use datasets of Shapenet, and I get files of "network.pth" and "opt.pickle". But I can't find where is the "Elementary Structures" ,so I don't know how to compute correspondence use these "Elementary Structures". So I think your readme.md document is not complete, would you like to explain this issues.I don't know what to do after I finished trained my datasets, and how to get the correspondence. Looking for your early reply. Thank you!

    opened by cainiaoshidai 0
Releases(1-beta)
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022