Analyzing basic network responses to novel classes

Overview

novelty-detection

Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet.

If you find this work helpful in your research, please cite:

Eshed, N. (2020). Novelty detection and analysis in convolutional neural networks (Accession No. 27994027)[Master's thesis, Cornell University]. ProQuest Dissertations & Theses Global.

@mastersthesis{eshed_novelty_detection,
  author={Noam Eshed},
  title={Novelty detection and analysis in convolutional neural networks},
  school={Cornell University},
  year={2020},
  publisher={ProQuest Dissertations & Theses Global}
}

Data

in_out_class.csv

This is hand-annotated data from iNaturalist. The most up-to-date version can be found here The data taken directly from iNaturalist includes the biological groups and scientific names of natural things. Annotators included the common English name(s) for each creature, their relation to ImageNet, any relevant notes, and their initials. For details regarding annotation guidelines, see this link.

alexnet_inat_results/

inat_results_top_choice.json

This json file contains the results from testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist. It only includes the top one result (i.e. the label chosen by the network) for each image in iNaturalist, and so is most efficient when looking into the distribution of labels chosen for a certain type of creature.

Biological group files

Each of these folders contains all of the results of testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist in the given biological group. This includes all possible labels, their scores, and their confidence values for each image. Since ImageNet has 1000 classes, that means that each image in iNaturalist has 3 vectors of length 1000 to store the label, score, and confidence value information. Each of the files within these folders contains the data for a single species within the given biological group

Code

class_in_or_out.py

This script plots the distribution of the top n CNN labels for all (or part) of the image data. Looking at all species of interest, it averages the frequency of the top n labels. Note that the top n labels are not necessarily in the same order for each species, and so the labels themselves are ignored.

The species each fall under one of four annotated ImageNet relationship categories: in ImageNet, not in ImageNet, parent in ImageNet, and relative in Imagenet. These annotations are taken from in_out_class.csv. The plots may be stratified by these relationship categories.

As an example, this code can plot the frequency of the top 10 labels over all bird images, and split by the species' relationship to Imagenet. The resulting plot will show the average distribution of label frequencies. The top label frequency, for example, is the frequency of the top occuring label over all images averaged over a given species, regardless of what that top label actually was.

This plot shows the frequency of the top 20 labels over all bird species in iNaturalist:

Bird Label Frequencies

plot_result_distribution.py

This script plots the distribution of CNN labels over each species. It does so by counting the number of occurrences of each label over many images of that species and normalizing the result to get a frequency distribution rather than an occurrence count distribution. There is an option to color and label each point according to the average confidence of the label. This can help us understand what common mistakes the network makes when classifying images of a given species.

In this example plot, we can see the distribution of all labels guessed by the network in the set of African Penguin images. It shows that approximately 19% of the images are classified as magpie, 19% as goose, etc. Interestingly, the king_penguin label is only awarded to 5% of the images and is tied for the 5th most common label.

African Penguin Distribution

alexnet_novelty.py

This script tests AlexNet (pretrained on ImageNet) on all of the data from iNaturalist and saves the result into the alexnet_inat_results/ folder.

Owner
Noam Eshed
Noam Eshed
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022