Node-level Graph Regression with Deep Gaussian Process Models

Overview

Node-level Graph Regression with Deep Gaussian Process Models

Prerequests

our implementation is mainly based on tensorflow 1.x and gpflow 1.x:

python 3.x (3.7 tested)
conda install tensorflow-gpu==1.15
pip install keras==2.3.1
pip install gpflow==1.5
pip install gpuinfo

Besides, some basic packages like numpy are also needed. It's maybe easy to wrap the codes for TF2.0 and GPflow2, but it's not tested yet.

Specification

Source code and experiment result are both provided. Unzip two archive files before using experiment notebooks.

Files

  • dgp_graph/: cores codes of the DGPG model.
    • impl_parallel.py: a fast node-level computation parallelized implementation, invoked by all experiments.
    • my_op.py: some custom tensorflow operations used in the implementation.
    • impl.py: a basic loop-based implementation, easy to understand but not practical, leaving just for calibration.
  • data/: datasets.
  • doubly_stochastic_dgp/: codes from repository DGP
  • compatible/: codes to make the DGP source codes compatible with gpflow1.5.
  • gpflow_monitor/: monitoring tool for gpflow models, from this repo.
  • GRN inference: code and data for the GRN inference experiment.
  • demo_city45.ipynb: jupyter notebooks for city45 dataset experiment.
  • experiments.zip: jupyter notebooks for other experiments.
  • results.zip: contains original jupyter notebooks results. (exported as HTML files for archive)
  • run_toy.sh: shell script to run additional experiment.
  • toy_main.py: code for additional experiment (Traditional ML methods and DGPG with linear kernel).
  • ER-0.1.ipynb: example script for analyzing time-varying graph structures.

Experiments

The experiments are based on python src files and demonstrated by jupyter notebooks. The source of an experiment is under directory src/experiments.zip and the corresponding result is exported as a static HTML file stored in the directory results.zip. They are organized by dataset names:

  1. Synthetic Datasets

For theoretical analysis.

  • demo_toy_run1.ipynb

  • demo_toy_run2.ipynb

  • demo_toy_run3.ipynb

  • demo_toy_run4.ipynb

  • demo_toy_run5.ipynb

For graph signal analysis on time-varying graphs.

  • ER-0.05.ipynb

  • ER-0.2.ipynb

  • RWP-0.1.ipynb

  • RWP-0.2.ipynb

  • RWP-0.3.ipynb

  1. Small Datasets
  • demo_city45.ipynb
  • demo_city45_linear.ipynb (linear kernel)
  • demo_city45_baseline.ipynb (traditional regression methods)
  • demo_etex.ipynb
  • demo_etex_linear.ipynb
  • demo_etex_baseline.ipynb
  • demo_fmri.ipynb
  • demo_fmri_linear.ipynb
  • demo_fmri_baseline.ipynb
  1. Large Datasets (traffic flow prediction)
  • LA
    • demo_la_15min.ipynb
    • demo_la_30min.ipynb
    • demo_la_60min.ipynb
  • BAY
    • demo_bay_15min.ipynb
    • demo_bay_30min.ipynb
    • demo_bay_60min.ipynb
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022