Simple embedding based text classifier inspired by fastText, implemented in tensorflow

Overview

FastText in Tensorflow

This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of fastText.

Classification is done by embedding each word, taking the mean embedding over the full text and classifying that using a linear classifier. The embedding is trained with the classifier. You can also specify to use 2+ character ngrams. These ngrams get hashed then embedded in a similar manner to the orginal words. Note, ngrams make training much slower but only make marginal improvements in performance, at least in English.

I may implement skipgram and cbow training later. Or preloading embedding tables.

<< Still WIP >>

You can use Horovod to distribute training across multiple GPUs, on one or multiple servers. See usage section below.

FastText Language Identification

I have added utilities to train a classifier to detect languages, as described in Fast and Accurate Language Identification using FastText

See usage below. It basically works in the same way as default usage.

Implemented:

  • classification of text using word embeddings
  • char ngrams, hashed to n bins
  • training and prediction program
  • serve models on tensorflow serving
  • preprocess facebook format, or text input into tensorflow records

Not Implemented:

  • separate word vector training (though can export embeddings)
  • heirarchical softmax.
  • quantize models (supported by tensorflow, but I haven't tried it yet)

Usage

The following are examples of how to use the applications. Get full help with --help option on any of the programs.

To transform input data into tensorflow Example format:

process_input.py --facebook_input=queries.txt --output_dir=. --ngrams=2,3,4

Or, using a text file with one example per line with an extra file for labels:

process_input.py --text_input=queries.txt --labels=labels.txt --output_dir=.

To train a text classifier:

classifier.py \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

To predict classifications for text, use a saved_model from classifier. classifier.py --export_dir stores a saved model in a numbered directory below export_dir. Pass this directory to the following to use that model for predictions:

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=proba

To export the embedding layer you can export from predictor. Note, this will only be the text embedding, not the ngram embeddings.

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=embedding

Use the provided script to train easily:

train_classifier.sh path-to-data-directory

Language Identification

To implement something similar to the method described in Fast and Accurate Language Identification using FastText you need to download the data:

lang_dataset.sh [datadir]

You can then process the training and validation data using process_input.py and classifier.py as described above.

There is a utility script to do this for you:

train_langdetect.sh datadir

It reaches about 96% accuracy using word embeddings and this increases to nearly 99% when adding --ngrams=2,3,4

Distributed Training

You can run training across multiple GPUs either on one or multiple servers. To do so you need to install MPI and Horovod then add the --horovod option. It runs very close to the GPU multiple in terms of performance. I.e. if you have 2 GPUs on your server, it should run close to 2x the speed.

NUM_GPUS=2
mpirun -np $NUM_GPUS python classifier.py \
  --horovod \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

The training script has this option added: train_classifier.sh.

Tensorflow Serving

As well as using predictor.py to run a saved model to provide predictions, it is easy to serve a saved model using Tensorflow Serving with a client server setup. There is a supplied simple rpc client (predictor_client.py) that provides predictions by using tensorflow server.

First make sure you install the tensorflow serving binaries. Instructions are here.

You then serve the latest saved model by supplying the base export directory where you exported saved models to. This directory will contain the numbered model directories:

tensorflow_model_server --port=9000 --model_base_path=model

Now you can make requests to the server using gRPC calls. An example simple client is provided in predictor_client.py:

predictor_client.py --text="Some text to classify"

Facebook Examples

<< NOT IMPLEMENTED YET >>

You can compare with Facebook's fastText by running similar examples to what's provided in their repository.

./classification_example.sh
./classification_results.sh
Owner
Alan Patterson
Alan Patterson
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022