AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

Related tags

Deep Learningaugmix
Overview

AugMix

Introduction

We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented images, which results in increased robustness and improved uncertainty calibration. AugMix does not require tuning to work correctly, as with random cropping or CutOut, and thus enables plug-and-play data augmentation. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance by more than half in some cases. With AugMix, we obtain state-of-the-art on ImageNet-C, ImageNet-P and in uncertainty estimation when the train and test distribution do not match.

For more details please see our ICLR 2020 paper.

Pseudocode

Contents

This directory includes a reference implementation in NumPy of the augmentation method used in AugMix in augment_and_mix.py. The full AugMix method also adds a Jensen-Shanon Divergence consistency loss to enforce consistent predictions between two different augmentations of the input image and the clean image itself.

We also include PyTorch re-implementations of AugMix on both CIFAR-10/100 and ImageNet in cifar.py and imagenet.py respectively, which both support training and evaluation on CIFAR-10/100-C and ImageNet-C.

Requirements

  • numpy>=1.15.0
  • Pillow>=6.1.0
  • torch==1.2.0
  • torchvision==0.2.2

Setup

  1. Install PyTorch and other required python libraries with:

    pip install -r requirements.txt
    
  2. Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data/cifar
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/cifar/
    tar -xvf CIFAR-10-C.tar -C data/cifar/
    
  3. Download ImageNet-C with:

    mkdir -p ./data/imagenet/imagenet-c
    curl -O https://zenodo.org/record/2235448/files/blur.tar
    curl -O https://zenodo.org/record/2235448/files/digital.tar
    curl -O https://zenodo.org/record/2235448/files/noise.tar
    curl -O https://zenodo.org/record/2235448/files/weather.tar
    tar -xvf blur.tar -C data/imagenet/imagenet-c
    tar -xvf digital.tar -C data/imagenet/imagenet-c
    tar -xvf noise.tar -C data/imagenet/imagenet-c
    tar -xvf weather.tar -C data/imagenet/imagenet-c
    

Usage

The Jensen-Shannon Divergence loss term may be disabled for faster training at the cost of slightly lower performance by adding the flag --no-jsd.

Training recipes used in our paper:

WRN: python cifar.py

AllConv: python cifar.py -m allconv

ResNeXt: python cifar.py -m resnext -e 200

DenseNet: python cifar.py -m densenet -e 200 -wd 0.0001

ResNet-50: python imagenet.py <path/to/imagenet> <path/to/imagenet-c>

Pretrained weights

Weights for a ResNet-50 ImageNet classifier trained with AugMix for 180 epochs are available here.

This model has a 65.3 mean Corruption Error (mCE) and a 77.53% top-1 accuracy on clean ImageNet data.

Citation

If you find this useful for your work, please consider citing

@article{hendrycks2020augmix,
  title={{AugMix}: A Simple Data Processing Method to Improve Robustness and Uncertainty},
  author={Hendrycks, Dan and Mu, Norman and Cubuk, Ekin D. and Zoph, Barret and Gilmer, Justin and Lakshminarayanan, Balaji},
  journal={Proceedings of the International Conference on Learning Representations (ICLR)},
  year={2020}
}
Owner
Google Research
Google Research
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022