[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Related tags

Deep LearningMAK
Overview

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling

Introduction

Contrastive learning approaches have achieved great success in learning visual representations with few labels. That implies a tantalizing possibility of scaling them up beyond a curated target benchmark, to incorporating more unlabeled images from the internet-scale external sources to enhance its performance. However, in practice, with larger amount of unlabeled data, it requires more compute resources for the bigger model size and longer training. Moreover, open-world unlabeled data have implicit long-tail distribution of various class attributes, many of which are out of distribution and can lead to data imbalancedness issue. This motivates us to seek a principled approach of selecting a subset of unlabeled data from an external source that are relevant for learning better and diverse representations. In this work, we propose an open-world unlabeled data sampling strategy called Model-Aware K-center (MAK), which follows three simple principles: (1) tailness, which encourages sampling of examples from tail classes, by sorting the empirical contrastive loss expectation (ECLE) of samples over random data augmentations; (2) proximity, which rejects the out-of-distribution outliers that might distract training; and (3) diversity, which ensures diversity in the set of sampled examples. Empirically, using ImageNet-100-LT (without labels) as the target dataset and two ``noisy'' external data sources, we demonstrate that MAK can consistently improve both the overall representation quality and class balancedness of the learned features, as evaluated via linear classifier evaluation on full-shot and few-shot settings.

Method

pipeline

Environment

Requirements:

pytorch 1.7.1 
opencv-python
kmeans-pytorch 0.3
scikit-learn

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge matplotlib scikit-learn

Sampling

Prepare

change the access permissions

chmod +x  cmds/shell_scrips/*

Get pre-trained model on LT datasets

bash ./cmds/shell_scrips/imagenet-100-add-data.sh -g 2 -p 4866 -w 10 --seed 10 --additional_dataset None

Sampling on ImageNet 900

Inference

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-100 --inference_dataset_split imageNet_100_LT_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (w/ Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 10

sampling 10K at Imagenet900

bash ./cmds/shell_scrips/sampling.sh --pretrain_seed 10

Citation

@inproceedings{
jiang2021improving,
title={Improving Contrastive Learning on Imbalanced Data via Open-World Sampling},
author={Jiang, Ziyu and Chen, Tianlong and Chen, Ting and Wang, Zhangyang},
booktitle={Advances in Neural Information Processing Systems 35},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022