【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

Related tags

Deep LearningVRGNet
Overview

From Rain Generation to Rain Removal (CVPR2021)

Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng

[PDF&&Supplementary Material]

Abstract

For the single image rain removal (SIRR) task, the performance of deep learning (DL)-based methods is mainly affected by the designed deraining models and training datasets. Most of current state-of-the-art focus on constructing powerful deep models to obtain better deraining results. In this paper, to further improve the deraining performance, we novelly attempt to handle the SIRR task from the perspective of training datasets by exploring a more efficient way to synthesize rainy images. Specifically, we build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator with the input as some latent variables representing the physical structural rain factors, e.g., direction, scale, and thickness. To solve this model, we employ the variational inference framework to approximate the expected statistical distribution of rainy image in a data-driven manner. With the learned generator, we can automatically and sufficiently generate diverse and non-repetitive training pairs so as to efficiently enrich and augment the existing benchmark datasets. User study qualitatively and quantitatively evaluates the realism of generated rainy images. Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution that not only helps significantly improve the deraining performance of current deep single image derainers, but also largely loosens the requirement of large training sample pre-collection for the SIRR task.

Dependicies

pip install -r requirements.txt

Folder Directory

.
|-- for_spa                                   : Experiments on real SPA-Data
|   |-- data                                  : SPA-Data: train + test
|   |   `-- spa-data 
|   |       |-- real_world              
|   |       |-- real_world.txt
|   |       |-- real_world_gt
|   |       `-- test  
|   |-- train_spa_joint.py                    : Joint training on SPA-Data
|   |-- train_spa_aug.py                      : Augmentated training
|   |-- train_spa_smallsample_aug.py          : Small sample experiments (GNet in Table 1)
|   |-- train_spa_smallsample_noaug.py        : Small sample experiments (Baseline in Table 1)
|   |-- test_disentanglement.py               : Distentanglement experiments on SPA-Data
|   |-- test_interpolation.py                 : Interpolation experiments on SPA-Data
|   |-- spamodels                             : Joint pretrained model on SPA-Data

|-- for_syn                                   : Experiments on synthesized datasets
|   |-- data                                  : Synthesized datasets: train + test
|   |   |-- rain100H
|   |   |   |-- test
|   |   |   `-- train
|   |   |-- rain100L
|   |   |   |-- test
|   |   |   `-- train
|   |   `-- rain1400
|   |       |-- test
|   |       `-- train
|   |-- train_syn_joint.py                    : Joint training
|   |-- train_syn_aug.py                      : Augmentated training in Table 2
|   |-- test_disentanglement.py               : Distentanglement experiments
|   |-- test_interpolation.py                 : Interpolation experiments 
|   |-- syn100hmodels                         : Joint pretrained model on rain100H
|   |-- syn100lmodels                         : Joint pretrained model on rain100L
|   |-- syn1400models                         : Joint pretrained model on rain1400

Benchmark Dataset

Synthetic datasets: Rain100L, Rain100H, Rain1400

Real datasets: SPA-Data, Internet-Data(only for testing)

Detailed descriptions refer to the Survey, SCIENCE CHINA Information Sciences2021

Please refer to RCDNet, CVPR2021 for downloading these datasets and put them into the corresponding folders according to the dictionary above.

For Synthetic Dataset (taking Rain100L as an example)

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_syn/ 
$ python train_syn_joint.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --log_dir "./syn100llogs/" --model_dir "./syn100lmodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_syn_aug.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --netED "./syn100lmodels/ED_state_700.pt" --log_dir "./aug_syn100llogs/" --model_dir "./aug_syn100lmodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_syn_joint.py  --data_path "./data/rain100L/test/small/rain" --netDerain "./syn100lmodels/DerainNet_state_700.pt" --save_path "./derained_results/rain100L/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_syn_aug.py  --data_path "./data/rain100L/test/small/rain" --model_dir "./aug_syn100lmodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/rain100L/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/rain100L/rain" --gt_path "./interpolation_results/test_data/rain100L/norain" --netED "./syn100lmodels/ED_state_700.pt"  --save_patch "./interpolation_results/test_data/rain100L/crop_patch/" --save_inputfake "./interpolation_results/generated_data/rain100L/input_fake" --save_rainfake "./interpolation_results/generated_data/rain100L/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./syn100lmodels/ED_state_700.pt" --save_fake "./disentanglement_results/rain100L/" --gpu_id 0  

For SPA-Data

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_spa/ 
$ python train_spa_joint.py  --data_path "./data/spa-data/" --log_dir "./spalogs/" --model_dir "./spamodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_spa_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --log_dir "./aug_spalogs/" --model_dir "./aug_spamodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Step 3. Small Sample Training: (taking baseline PReNet as an example)

$ python train_spa_smallsample_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --fake_ratio 0.5 --train_num 1000 --log_dir "./aug05_spalogs/" --model_dir "./aug05_spamodels/" --niter 200 --gpu_id 0  
$ python train_spa_smallsample_noaug.py  --data_path "./data/spa-data/" --fake_ratio 0.5 --train_num 1000 --log_dir "./noaug05_spalogs/" --model_dir "./noaug05_spamodels/" --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_spa_joint.py  --data_path "./data/spa-data/test/small/rain" --netDerain "./spamodels/DerainNet_state_800.pt" --save_path "./derained_results/spa-data/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug_spamodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/spa-data/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/spa-data/rain" --gt_path "./interpolation_results/test_data/spa-data/norain" --netED "./spamodels/ED_state_800.pt"  --save_patch "./interpolation_results/test_data/spa-data/crop_patch/" --save_inputfake "./interpolation_results/generated_data/spa-data/input_fake" --save_rainfake "./interpolation_results/generated_data/spa-data/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./spamodels/ED_state_800.pt" --save_fake "./disentanglement_results/spa-data/" --gpu_id 0  
  1. Small Sample Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug05_spamodels/Aug05_DerainNet_state_200.pt" --save_path "./aug05_derained_results/spa-data/" --gpu_id 0  
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./noaug05_spamodels/NoAug05_DerainNet_state_200.pt" --save_path "./noaug05_derained_results/spa-data/" --gpu_id 0  

For Internet-Data

The test model is trained on SPA-Data.

Pretrained Model and Usage

  1. We have provided the joint pretrained model saved in syn100lmodels, syn100hmodels, syn1400models, and spamodels. If needed, you can dirctly utilize them to augment the original training set without exectuting the joint training.

  2. We only provide the PReNet for an example during the augmented training/testing phase. This is a demo. In practice, you can easily replace PReNet with other deep deraining models as well as yours for further performance improvement by adopting the augmented strategy with our generator. Please note that the training details in train_syn_aug.pyand train_spa_aug.pyare needed to be correspondingly adjusted.

  3. Please note that in our default settings, the generated patchsize is 64x64. In the released code, we also provide the model revision (i.e., RNet, Generator, and discriminator) for generating the size as 256x256. If other sizes are needed, you can correspondingly revise the network layer and then re-train the joint VRGNet.

Rain Generation Experiments

    

          

Rain Removal Experiments

Derained Results of Our VRGNet (i.e., PReNet-)

All PSNR and SSIM results are computed with this Matlab code. If needed, please download the results from NetDisk (pwd:2q6l)

Citation

@InProceedings{Wang_2021_CVPR,  
author = {Wang, Hong and Yue, Zongsheng and Xie, Qi and Zhao, Qian and Zheng, Yefeng and Meng, Deyu},  
title = {From Rain Generation to Rain Removal},  
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
month = {June},  
year = {2021}  
}

Contact

If you have any question, please feel free to concat Hong Wang (Email: [email protected])

Owner
Hong Wang
Natural Image Enhancement and Restoration, Medical Image Reconstruction, Image Processing, Joint Model-Driven and Data-Driven
Hong Wang
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023