Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Overview

Winning submission to the 2021 Brain Tumor Segmentation Challenge

This repo contains the codes and pretrained weights for the winning submission to the 2021 Brain Tumor Segmentation Challenge by KAIST MRI Lab Team. The code was developed on top of the excellent nnUNet library. Please refer to the original repo for the installation, usages, and common Q&A

Inference with docker image

You can run the inference with the docker image that we submitted to the competition by following these instructions:

  1. Install docker-ce and nvidia-container-toolkit (instruction)
  2. Pull the docker image from here
  3. Gather the data you want to infer on in one folder. The naming of the file should follow the convention: BraTS2021_ID_<contrast>.nii.gz with contrast being flair, t1, t1ce, t2
  4. Run the command: docker run -it --rm --gpus device=0 --name nnunet -v "/your/input/folder/":"/input" -v "/your/output/folder/":"/output" rixez/brats21nnunet , replacing /your/input/folder and /your/output/folder with the absolute paths to your input and output folder.
  5. You can find the prediction results in the specified output folder.

The docker container was built and verified with Pytorch 1.9.1, Cuda 11.4 and a RTX3090. It takes about 4GB of GPU memory for inference with the docker container. The provided docker image might not work with different hardwares or cuda version. In that case, you can try running the models from the command line.

Inference with command line

If you want to run the model without docker, first, download the models from here. Extract the files and put the models in the RESULTS_FOLDER that you set up with nnUNet. Then run the following commands:

nnUNet_predict -i <input_folder> -o <output_folder1> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD --save_npz
nnUNet_predict -i <input_folder> -o <output_folder2> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm --save_npz
nnUNet_ensemble -f <output_folder1> <output_folder2> -o <final_output_folder>

You need to specify the options in <>. TASK_ID is 500 for the pretrained weights but you can change it depending on the task ID that you set with your installation of nnUNet. To get the results that we submitted, you need to additionally apply post-processing threshold for of 200 and convert the label back to BraTS convention. You can check this file as an example.

Training with the model

You can train the models that we used for the competition using the command:

nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD <TASK_ID> <FOLD> --npz # BL config
nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm <TASK_ID> <FOLD> --npz # BL + L + GN config
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023